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Abstract
This chapter describes approaches for learning models of subcellular organization

from images. The primary utility of these models is expected to be from incorpo-

ration into complex simulations of cell behaviors. Most current cell simulations do

not consider spatial organization of proteins at all, or treat each organelle type as a

single, idealized compartment. The ability to build generativemodels for all proteins

in a proteome and use them for spatially accurate simulations is expected to improve
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the accuracy of models of cell behaviors. A second use, of potentially equal impor-

tance, is expected to be in testing and comparing software for analyzing cell images.

The complexity and sophistication of algorithms used in cell-image-based screens

and assays (variously referred to as high-content screening, high-content analysis, or

high-throughput microscopy) is continuously increasing, and generative models can

be used to produce images for testing these algorithms in which the expected answer

is known.
I. Introduction
As traditional reductionist paradigms of biomedical research increasingly give

way to systems approaches, the need to build predictive models that synthesize large

amounts of information from potentially diverse sources is becoming critical. Most

such current models take the form of transcriptional regulatory networks, protein–

protein interaction maps, or biochemical reaction simulations. These typically do

not consider spatial organization of cells or tissues. Important advances came with

systems such as MCell (Stiles et al., 1998), which allowed models to be constructed

using mesh representations of cells built from electron microscope images, and the

Virtual Cell (Loew and Schaff, 2001), which allowed appropriately processed

images to provide surface area and volume for its compartmental models.

Ontologies such as the genome ontology (GO) can be used to describe protein

attributes, including location, primarily at a major organelle level. Such assignments

can also be used to create compartmental models (e.g., http://biologicalnetworks.

net/tutorials). However, compartmental models suffer from some important limita-

tions, in that they treat all molecules within each compartment as being homoge-

nously distributed, and they do not allow appearance, disappearance, fission or

fusion of compartments.

Given the energy expended by cells to maintain their subcellular organization, and

the many defects that are associated with alterations in it, models that do not

accurately reflect subcellular organization are unlikely to perform satisfactorily at

predicting complex cell behaviors or how they respond to changes in conditions.

There is therefore a need for computational models that accurately represent the

number, size, shape, and positions of subcellular structures, the spatial relationships

between different structures, and how proteins (and other molecules) are distributed

between them (Murphy, 2010, 2011). In addition, there is a need for a mechanism for

representing how all of these vary within a population of cells of a single cell type,

within a single cell type under different conditions, among different cell types, and

among different organisms. Such models can not only capture cell behavior but can

also be an important step in understanding that behavior, since, for example, a

sufficiently detailed model helps distinguish aspects that are conserved and presum-

ably necessary from those that are highly variable and potentially not necessary.

In considering how to build such models, we can distinguish descriptive

models, which allow one to recognize what state a particular cell is in, from

http://biologicalnetworks.net/tutorials
http://biologicalnetworks.net/tutorials
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generative models, which can also synthesize new examples of cells in particular

states. We can also distinguish theoretical or conceptual models, which posit a

particular structure based on a generalized understanding, from data-driven

models that are learned from data and capture both general behavior and varia-

tion in that behavior.

My focus in this chapter will be primarily on methods developed in my group that

have been used to learn generative models of cell organization and protein distribu-

tion from two-dimensional and three-dimensional fluorescence microscope images

(Zhao and Murphy, 2007; Rohde et al., 2008a,b; Peng et al., 2009; Shariff et al.,

2010a, 2011; Peng and Murphy, 2011). We have recently grouped these methods as

part of the open source CellOrganizer project (http://cellorganizer.org), which

includes collaborations with a number of investigators studying particular cell

systems.
II. Components of a Model of Subcellular Organization
and Protein Distribution
Although there are a number of ways to break down the tasks necessary for

creating such models, we can distinguish at least three major components of a model

of the distribution of proteins within cells of a given type under a given condition:
�
 A model of subcellular organization, including distributions of the number, size,

shape, and position of each subcellular structure, any of which may be conditional

on the model(s) for other structures;

�
 A model representing the probability that a cell of a given type will contain a

certain number of molecules of a given protein, the expected fraction of those

molecules in each subcellular structure, and a measure of the variation in that

fraction from cell to cell;

�
 A model of how each protein is distributed within each structure, which may

consist of a self-organizing model that specifies only the affinities between pairs

of proteins within each structure.

Higher order models can then be built to specify how any of these models change

over time and condition: for example, during the cell cycle, in the presence of

perturbagens, for cells expressing mutations, or for different cell types.

I will focus below on work on the first two types of components.
III. Models of Subcellular Organization
At a conceptual level, the most complete model of subcellular organization is

probably the GO cellular component ontology (Ashburner et al., 2000). A significant

effort has been made to capture the vast majority of terms used to describe subcel-

lular structures. The terms in this ontology can be assigned to proteins in order to

http://cellorganizer.org/
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represent the results of experimental or computational analyses. The advantage of

this approach is precisely its disadvantage: general terms such as ‘‘mitochondria’’

can be associated with a protein while leaving many questions about what mito-

chondria are unanswered. However, to be useful for spatially realistic modeling,

ontology terms must be associated with a representation of each organelle’s number,

structure, and distribution within cells. Currently, such representations are abstract

and implicit rather than concrete and they often leave unspecified how the organelle

would look in different cell types. For example, the abstract concept of a mitochon-

drion is well understood by biologists but most would be hard pressed to accurately

describe how mitochondria vary in number, size, shape, and distribution from cell

type to cell type or organism to organism.

In building generative models, we refer to an individual image, stack, or movie to

be an instance drawn from an underlying model, whether an actual image or a

synthetic image. These instances are considered to have been generated by particular

values for the parameters of the model. The model is generative if it captures how

parameter values can be chosen for new instances.

A critical concept in creating models of subcellular organization is the conditional

relationships that exist among different components. This is easily illustrated by

considering the task of building generativemodels of nuclear and cell shape (i.e., the

positions of the nuclear and plasma membranes). We could build one generative

model from many examples of nuclear shapes, and build another generative model

frommany examples of cell shapes. If we want to synthesize a new example of a cell

containing a nucleus, we can imagine drawing a random example of a nuclear shape

from the first model, and drawing a random example of a cell shape from the second.

However, there is nothing that would prevent the example nuclear shape from being

too wide to fit inside the example cell shape, and nothing to tell us where within the

cell shape to put the nuclear shape. We must therefore connect the generation

processes, which we do by making the models dependent, or conditional, upon each

other. In our work, we have chosen tomake the cell shapemodel conditional upon the

nuclear shape. As we will see below, this means that during the learning process the

relationship between the shapes is captured, and during the generation process, an

example nuclear shape is first generated and used to generate an appropriate cell

shape.1 An alternative is to make the models joint, in which we learn simultaneously

a model for both shapes.

Another major consideration is whether to make the models parametric, in which

the values of model parameters explicitly describe various aspects of the sizes and

shapes of cell components, or nonparametric, in which sizes and shapes are implic-

itly described by the relationships between examples. This distinction will be made

clearer in the next sections where we consider models of cell components and how

they can be made conditional upon each other. In each case, we will consider
1 Of course, we might also have chosen to make the nuclear shape conditional upon the cell shape. Which

order is better will need to be determined by future work.
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the inputs necessary for training the model,

�
 the means of assessing how adequately the model describes the data,

�
 what types of outputs the model can generate.
A. Nuclear and Cell Shape Models

1. Nuclear Shape – Medial Axis Models
Nuclear shape is often represented in theoretical models as a sphere or more

generally an ellipsoid. Examination of only a few images of some cell types (espe-

cially adherent cultured cells) reveals how inaccurate this model can be. A somewhat

more accurate model can be learned directly from images (Zhao and Murphy, 2007)

using a medial axis approach (Blum, 1973). As illustrated in Fig. 1, medial axis

construction typically begins by first orienting all nuclear shapes (instances) so that

their major axes point in the same direction). Each instance is then represented by the

position of a curve bisecting the shape perpendicular to the major axis, and by the

width at each position along that curve. These curves can be fit using splines, such
g. 1 Illustration of a medial axis method for modeling a 2D nuclear shape instance. The original

clear image (a) was binarized (b) and rotated so that its major axis is vertical (c). The position of the

rve that divides the shape in half horizontally at each vertical position is then found (d). The horizontal

sitions of the medial axis as a function of the fractional vertical distance are shown by the symbols (e),

ng with a B-spline fit (solid curve). The width as a function of fractional distance is shown by the

mbols (f), along with the corresponding fit (solid curve). Scale bar, 5 um. From Zhao and Murphy

007).
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that a set of 11 spline coefficients describes each instance. The distribution(s) of these

parameters over many instances can then be learned. In this case, two multivariate

Gaussian distributions, one for the medial axis position and one for the width, were

shown to provide a good representation of nuclear shape in two-dimensional images

(Zhao and Murphy, 2007). Sampling from these distributions using a random number

generator can be done in order to create synthetic examples from the learned model.
2. Nuclear Shape – Cylindrical Spline Surface Model
For three-dimensional images, the medial axis method can result in an oversim-

plified shape model. An alternative is to convert the nuclear shape to cylindrical

coordinates and then fit a periodic spline surface (Peng and Murphy, 2011). This is

illustrated in Fig. 2. In this case, there is one parameter for the nuclear height and 32

parameters for the coefficients of the spline surface. For a collection of three-

dimensional images of HeLa cells, these parameters were also shown to be well

represented by a multivariate Gaussian distribution. As before, parameter values can

be randomly sampled from this distribution to generate new nuclear shape instances.
3. Nuclear Shape – Large Deformation Diffeomorphic Metric Mapping
These parametric models of nuclear shape have two significant advantages: first,

they can be computed fairly quickly, and second, the parameters (and parameter

distributions) can be stored compactly. However, they make assumptions about the

characteristics of nuclear shape that need to be captured (e.g., that small bumps can

be ignored) and do not handle well many concave or branched shapes. An important

alternative therefore is to use nonparametric models such as the large deformation
[(Fig._2)TD$FIG]

Fig. 2 Illustration of cylindrical spline surfacemethod for modeling a three-dimensional nuclear shape

instance. (a) Surface plot of a 3D HeLa cell nucleus. (b) Unfolded surface of the nuclear shape in a

cylindrical coordinate system. The surface plot shows the radius r as a function of azimuth u and height z.

(c) B-spline surface fitted to the unfolded nuclear surface. From Peng and Murphy (2011). (For color

version of this figure, the reader is referred to the web version of this book.)
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Fig. 3 Determining the distance between two shapes using large deformation metric mapping. The

goal is to measure the distance between the starting shape and the target shape. This is done by gradually

deforming the starting shape to become more similar to the target shape while recording how much

perturbation is necessary at each step. From Rohde et al. (2008a).
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diffeomorphic metric mapping (LDDMM) framework developed by Miller and

colleagues (Beg et al., 2005). In this framework, shape is represented implicitly

by measuring differences between pairs of shape instances (see Fig. 3). The distance

matrix is then used to create a shape space in which similar shapes are near each

other. This approach has been demonstrated to provide an excellent representation of

nuclear shape in HeLa cells (Rohde et al., 2008a), and the method can be applied to

two-, three-, or four-dimensional images. This power comes at a price: saving the

shape model requires storing both the distance matrix (or the shape space) and the

example images used to create it. Generating new shape instances can be achieved by

interpolating between the original examples (Peng et al., 2009), but this can be

computationally expensive.

An important additional use of non-rigid registration methods is to identify posi-

tions within nuclei. In an exciting example, the positions of different chromosome

regions have been mapped to a common frame of reference using a multiresolution

non-rigid registration approach (Yang et al., 2008). Potentially, position mapping

could be combined with modeling of the nuclear shape itself as described above.
4. Cell Shape – Circular and Spherical Coordinate Ratiometric Models
Cell shape can also be represented using diffeomorphicmethods, using exactly the

same approach as used for nuclei. This is appropriate when modeling only the cell

shape is desired, but if nuclei are to be included, as discussed above, the nuclear and

cell shape models must be conditionally related. This can be achieved using diffeo-

morphic methods by creating indexed images in which pixels/voxels that are part of

the background have one value (e.g., 0), pixels/voxels in the nucleus have a second

value (e.g., 1), and pixels/voxels inside the cell but not in the nucleus have a third

value. Finding the distance between such indexed images is a bit more computa-

tionally demanding.
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To create more compact conditional models of cell shape, a simple approach can

be used. For two-dimensional images, the coordinates of the cell and nuclear bound-

ary are first mapped to polar coordinates, and then the ratio between the two is

calculated for a fixed number of angles (e.g., every degree over 360 degrees) (Zhao

and Murphy, 2007). For three-dimensional images, these ratios are calculated for

each two-dimensional slice (Peng and Murphy, 2011). The model is then simplified

by keeping only a certain number of principal components (for HeLa cells, 10

components were used for two-dimensional images and 25 for three-dimensional

images). The distributions of these components have been shown to follow a mul-

tivariate Gaussian, providing a very compact conditional model. To generate

instances from the model, a nuclear shape is first generated using one of the methods

above, principal component coefficients are chosen using random numbers and

converted to the cell/nuclear ratio as a function of angle, and then these ratios are

multiplied by the corresponding position on the synthetic nuclear boundary to

generate the synthetic cell boundary.
B. Models of Vesicular Organelles: Shape

1. Gaussian Object Models
Many vesicular organelles, such as lysosomes, show a roughly spherical shape in

both electron microscope and fluorescent microscope images. Such shapes can be

easily modeled if the organelles are well resolved from each other in images.

However, vesicular organelles are frequently found quite close to each other, and

they can appear to overlap when imaged in two dimensions. Furthermore, sampling

noise may make them appear irregularly shaped. One approach to this problem is to

assume that the organelles are all spherical (or ellipsoidal) and try to estimate what

configuration of organelles gave rise to a particular cell image. This can be done by

thresholding the image of an organelle marker to identify connected components

that may consist of more than one organelle. As shown in Fig. 4, image processing
[(Fig._4)TD$FIG]

Fig. 4 Illustration of fitting objects using a 2DGaussianmixture model. A region of a cell containing a

single composite object (found by thresholding and connecting above threshold pixels) (a) is smoothed by

a Gaussian low pass filter (b) to facilitate detection of local maxima (peaks) in the composite object.

Fitting using a spherical covariance matrix(c) yields the estimated positions and sizes of the Gaussian

objects assumed to have given rise to the original image. A similar approach is used for 3D images. After

Zhao and Murphy (2007).
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and parameter estimation can then be used to find the positions and sizes of the

individual organelles. A statistical model of the distribution of the number of objects

per cell, and the distribution of the Gaussian parameters (covariancematrix) can then

be constructed. Thismethod can be used for both two-and three-dimensional images,

although distinguishing different organelles is easier in three-dimensional images.
2. Outline Models
More accurate models can be obtained using methods that seek to estimate the

position of the outline of vesicular organelles. For example, piece-wise linear closed

splines have been used to describe the shape of endosomes (Helmuth et al., 2009).

Such methods could be combined with eigenshape or diffeomorphic methods to

create generative models.
3. Object Type Models
Even more detailed (but not necessarily more accurate!) models can be obtained

by finding all objects in a large set of cell images and clustering them to identify

distinct object types. This approach has been applied to a large collection of HeLa

cell images, and the resulting object types were found to enable recognition of

different subcellular patterns (Zhao et al., 2005). As discussed below, this approach

has been used to estimate the amount of a given probe in different organelles.

However, it could also be used as part of a generative model by modeling the number

and shape of each object type.
C. Models of Vesicular Organelles: Position
Regardless of which method is used for estimating object number and shape, a

model of the position of each object within the cell is also needed. This clearly needs

to be conditional upon the cell and nuclear shape model. One simple approach is to

represent the position of each observed object in a normalized polar or spherical

coordinate system (depending on whether the image is two- or three-dimensional).

To do this, the distance of the center of each object from the nuclear boundary is

expressed as a fraction of the sum of the distance from the nuclear boundary and the

distance from the cell boundary (this normalized distance can be negative if the

object is inside the nucleus). The angle (or angles) of the object’s center to the center

of the nucleus are also found. An empirical probability density map is then formed

by tabulating these positions for many objects from many cells. To use this model to

synthesize an image, the number of objects is drawn from the appropriate distribu-

tion, a size and shape are drawn for each (depending on which shape model is being

used), and distances and angles are chosen randomly according to the density map

for each and converted to actual coordinates for particular cell and nuclear shape

instances.
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Fig. 5 (a) Overview of inverse modeling approach for estimating parameters of the microtubule

generative model. From Sharif et al. (Shariff et al., 2010a). (b) Example of two-dimensional slice from

three-dimensional synthetic image generated by tubulin model.
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D. Models of Cytoskeletal Structures
The methods described above for building nuclear, cell, and organelle models

all make direct estimates of model parameters from real images. Although decom-

posing a cluster of organelles into individual objects may be difficult, it is usually

possible. Some organelles or structures are much more difficult to resolve into

individual elements. For example, two- or three-dimensional images of the dis-

tribution of tubulin by either wide-field or confocal microscopy typically show

individual microtubules at the cell periphery but a tangle of crossing microtubules

near the centrosome. Estimating the number of individual microtubules or their

individual paths is nearly impossible. One solution is to use specialized micro-

scope methods, such as speckle microscopy, to resolve individual microtubules.

An alternative is to use inverse modeling methods to try to estimate the parameters

of a microtubule model, as illustrated in Fig. 5a. A generative model is created and

then instances of that model are created for many different sets of parameters.

These instances are compared to a real image and the parameters corresponding to

the best match are chosen. This approach has been used to study kinetochore-

microtubule dynamics (Sprague et al., 2003). We have used a similar approach to

build a generative model of microtubules in interphase HeLa cells and 3T3 cells

(Shariff et al., 2010a, 2011). An example of a synthetic microtubule distribution is

shown in Fig. 5b.
E. Putting it all Together
Once the various components of a model have been created, it is a simple matter to

construct synthetic cell instances. Figs. 6 and 7 show idealized images (with no

blurring or noise) for instances created from two- or three-dimensional models,

respectively. As discussed below, these idealized images can also be used to estimate

how that cell might look if imaged in a particular microscope.
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Fig. 6 Example of synthetic image generated by a two-dimensional model learned from images of the

lysosomal protein LAMP2. The DNA distribution is shown in red, the cell outline in blue, and LAMP2-

containing objects in green. From http://murphylab.web.cmu.edu/data/2007_Cytometry_GenModel.

html. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this book.)

[(Fig._7)TD$FIG]

Fig. 7 Example synthetic image generated by a three-dimensional model learned from images of the

lysosomal protein LAMP2. The nuclear surface is shown in red, the cell surface in blue, and LAMP2-

containing objects in green. (See color plate.)
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IV. Protein Distributions Across Subcellular Structures
Themodels described above capture how cellular organelles are arrangedwithin a

cell, but do not address the critical question of how the tens of thousands of proteins

in each cell are distributed among these organelles. Images, especially fluorescence

microscope images, can be a major source of information on the subcellular dis-

tributions of proteins, and, as mentioned above, may be used directly in cell simula-

tions. The feasibility of using automated pattern recognition approaches to recognize

the subcellular patterns of proteins that localize primarily to one organelle has been

well demonstrated (for reviews see (Chen et al., 2006; Conrad and Gerlich, 2010;

Shariff et al., 2010b)). However, many proteins are found to varying extents in more

than one organelle, and therefore a means of determining that distribution is needed.
A. Boolean Vectors: GO Terms
Some information about protein subcellular location can be obtained from protein

databases, which have at least some GO terms associated with most proteins.

However, there are a number of limitations of these annotations, most of which derive

from the absence of enough experimental data. For example, these databases do not

attempt to capture changes in GO terms for different conditions or cell types or

distinguish between subcellular locations of different splice isoforms. Nonetheless,

when no other information is available, GO terms can be represented as a Boolean

vector describing whether a particular protein is or is not found in each organelle.
B. Dirichlet Distributions: Pattern Unmixing
What is really needed for accurate modeling of a protein is a Dirichlet distribution

– a probability distribution (that sums to one) for each molecule of that protein over

the different organelles. We can convert the Boolean vector for a particular protein

derived from GO terms into a Dirichlet distribution by dividing by the number of

organelles it is thought to be found in. This assumes, in the absence of any other

information, that it is equally likely to be in each of them.Amuch better alternative is

to try to estimate the amount of a given protein in each organelle or structure. To do

this, we define a set of fundamental patterns to be a set from which all composite

patterns can be constructed. This might correspond to the set of all organelle

patterns, but, depending on the extent to which they are distinct, might contain

multiple subpatterns for a given organelle. For example, protein distributions in

the nucleus have been divided into at least eight nuclear subdomains (Bauer et al.,

2011). For a collection of images of a particular protein, we seek to find the Dirichlet

distribution over these fundamental patterns. In other words, we estimate how much

of the protein would have to be in each pattern in order for the overall image to appear

as it does. This task can be viewed as unmixing an image formed by mixing

fundamental patterns.
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Wehave described two approaches for estimating this: one in whichwe specify the

fundamental patterns in advance and just try to estimate the fractions (referred to as

supervised unmixing), and one in which we try to find the fundamental patterns as

well as the fractions (referred to as unsupervised unmixing). Using a test set of

images created by an automated high content imaging system, we have demonstrated

that good estimates of the fractions can be obtained by both the supervised (Peng

et al., 2010) and unsupervised (Coelho et al., 2010) approaches.
V. Use of Models for Testing Algorithms
A classic problem in testing algorithms for microscope images is that the correct

results are frequently not known. A generative model for a desired pattern or

structure can be combined with a model of image formation in a particular micro-

scope to generate test images (phantoms) for which the correct results from image

analysis are known. The process by which an image is formed in a microscope is

quite well understood, so accurate models of point-spread functions and sampling

noise can be constructed and applied to the idealized images generated by the

methods described above. This approach has been applied previously for nuclei

(Yang et al., 2008; Svoboda et al., 2009); the paper by Svoboda et al. (Svoboda

et al., 2009) provides a particularly good image formation model.

The phantom approach can be extended to any combination of the tools in the

CellOrganizer project to generate test images with known cell boundaries, object

locations, and/or subcellular patterns. The accuracy of algorithms can also be

determined as a function of the parameters of the generative model, such as cell

size or extent of nuclear elongation. Collections of already synthesized synthetic cell

images can be found at http://CellOrganizer.org.
VI. Conclusion
In this chapter, I have described current approaches for building accurate models

of cell organization directly from fluorescent microscope images. These models

capture variation in cell organization at the level of the nucleus, cell membrane, and

individual organelles, and can capture how particular proteins are distributed among

cellular components. They represent a significant advance over the use of words

(such as GO terms) as the means by which results of experiments on subcellular

localization and organization are captured and communicated. Nonetheless, the

field is at the beginning, and it is hoped that many investigators will develop and

make available tools that improve and extend the approaches described here.

Examples of futurework that can be anticipated includemethods for merging images

at different resolutions (especially light and electron microscope images) and meth-

ods for describing the interplay between localization and structure for proteins

involved in creating subcellular structures.

http://cellorganizer.org/
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