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ABSTRACT

Motivation: Evaluation of previous systems for automated determin-

ation of subcellular location from microscope images has been done

using datasets in which each location class consisted of multiple

images of the same representative protein. Here, we frame a more

challenging and useful problem where previously unseen proteins are

to be classified.

Results: Using CD-tagging, we generated two new image datasets for

evaluation of this problem, which contain several different proteins for

each location class. Evaluation of previous methods on these new

datasets showed that it is much harder to train a classifier that gen-

eralizes across different proteins than one that simply recognizes a

protein it was trained on.

We therefore developed and evaluated additional approaches,

incorporating novel modifications of local features techniques.

These extended the notion of local features to exploit both the pro-

tein image and any reference markers that were imaged in parallel.

With these, we obtained a large accuracy improvement in our new

datasets over existing methods. Additionally, these features help

achieve classification improvements for other previously studied

datasets.

Availability: The datasets are available for download at http://murphy

lab.web.cmu.edu/data/. The software was written in Python and Cþþ

and is available under an open-source license at http://murphylab.

web.cmu.edu/software/. The code is split into a library, which can

be easily reused for other data and a small driver script for reproducing

all results presented here. A step-by-step tutorial on applying the

methods to new datasets is also available at that address.

Contact: murphy@cmu.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Generation of images of cells and tissues is increasingly easy.

With the advent of automated microscopes, the capability for

data generation has out-stripped the capability for visual data

analysis. This has led to extensive work on automated methods

for interpreting microscope images.

The problem of classification of subcellular patterns has

received particular attention, and a number of datasets and clas-

sifiers have been described. These datasets typically feature one

different protein for each class of interest, with multiple images

for the same tagged protein. On these datasets, better than

human performance has been reported (Murphy et al., 2003;

Nattkemper et al., 2003).
This previous work implicitly assumed that results obtained in

those datasets can be generalized to the problem of classifying

previously unseen proteins. In this work, we test this assumption

using two new datasets where there are multiple proteins in each

location class (and multiple images per protein). These datasets

were created using NIH 3T3 cell lines expressing green fluores-

cent protein (GFP)-tagged proteins created by CD-tagging

(Garcı́a Osuna et al., 2007; Jarvik et al., 2002).
We tested classifiers using a cross-validation protocol whereby

images from the same protein are never present in both the

training and testing sets. This is a stricter proxy for cross-protein

generalization than randomizing by image, and guards against

the possibility that learning is based on properties of the tagging

method (e.g. intensity) or too specific to the protein in question

(e.g. a particular subpattern of an organelle). With this protocol

and existing methods, generalization accuracy was only 60% for

our new datasets.

We therefore investigated whether improved generalization

could be obtained using alternative feature representations of

the images. Many previous systems use image-level features

such as texture features (Chebira et al., 2007; Huang et al.,

2003; Nanni and Lumini, 2008; Nanni et al., 2010; Shamir

et al., 2008b), but some specialized features for cell images have

also been proposed (Boland and Murphy, 2001), including fea-

tures for single-cell regions [in fact, historically, classification on

cell-segmented images was reported first (Boland et al., 1998)].

*To whom correspondence should be addressed.
yPresent address: European Molecular Biology Laboratory (EMBL),
Heidelberg, Germany.
zPresent address: Department of Biological Sciences, University of the
Sciences, Philadelphia, USA.

� The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2343

 at Fakultaetsbibliothek B
iologie II+

III on Septem
ber 6, 2013

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

,
,
(
)).
http://bioinformatics.oxfordjournals.org/


In the computer vision literature, local features, such as the

scale-invariant feature transform, introduced by Lowe (1999),

have shown good results in many settings. They have not been

widely used in bioimage analysis [there are a few uses of patch-

based methods, a basic form of these features (Huh et al., 2009;

Marée et al., 2007)]. Object-level features, which can be seen as a

form of local features, were used for subcellular location unmix-

ing, both in supervised and unsupervised modes (Coelho et al.,

2010a; Peng et al., 2010; Zhao et al., 2005).
Local features, as presented in the literature, are generally

defined on a gray-scale image and do not take advantage of

the multiple image channels frequently acquired by fluorescent

microscopy. There is some work on natural scene color images

(van de Sande et al., 2010), but it does not directly apply to

fluorescence microscopy images for analyzing subcellular

patterns where one channel is privileged (depicting the protein

distribution of interest) and others serve as references. Naturally,

the simplest protocol is to ignore all but the primary channel.

However, the use of a reference channel can provide additional

important information, particularly at the local level. For ex-

ample, we could distinguish between two vesicle classes that

appear similar in the primary (protein) channel but differ in dis-

tance from the nucleus because the region containing vesicles will

appear differently in the reference nuclear channel. We present a

simple protocol to take these reference channels into account.

Using these features, we obtain a large accuracy gain on our

datasets. We also use other datasets to further validate the

value of the features and find that they lead to good results in

all tested datasets.

widefield

confocal

Fig. 1. Examples of RandTag datasets. Top row consists of widefield images (nuclear pattern on the left, and nucleoli on the right), second row of

confocal images (cytoplasmic pattern on the left, mitochondrial pattern on the right). Images are false color: the red channel shows the nuclear marker

Hoechst, the green channel is the GFP-tagged protein. Images shown are the first image in their classes and have not been manually chosen. The widefield

images were automatically acquired and the quality is lower than if they had been manually acquired. Images have been contrast stretched for publication
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2 DATASETS

2.1 RandTag datasets

Two datasets are introduced in this article, both from the
RandTag (RT) project (Garcı́a Osuna et al., 2007). The first data-

set consists of widefield images, the second of confocal images.
The widefield images were collected with an automated micro-

scope. Therefore, the quality of the images is variable. As a pre-

processing step, images that are completely out-of-focus or
empty of cells were removed. The confocal images were acquired
manually and are of higher quality. Examples are shown in

Figure 1. These examples were not chosen as particularly pleas-
ant looking, but are representative of the images in the dataset.
The images were labeled by three experts (The experts were

L.P.C., E.O.H. and E.G.A. for the widefield dataset, and L.P.C.,
E.G.A. and A.N. for the confocal dataset.) using a protocol
where the experts first labeled the images independently and

were then given an opportunity to change their minds given
the other labelings. Only images where all experts agreed after
this second step were retained. Table 1 shows summary statistics

for these two datasets.
The two datasets contain multiple images of the same protein,

and multiple proteins per location class. Most other subcellular

location datasets contain multiple images per protein but only
one protein for each location class (the exception is the Locate
database).

2.2 Other datasets

We present the main properties of the datasets in Table 2. All are
publicly available.

2.2.1 Murphy Lab 2D HeLa Dataset The Murphy Lab 2D
HeLa dataset is by now a benchmark in the field, used by

many researchers (Boland and Murphy, 2001; Chebira et al.,
2007; Huang and Murphy, 2004; Lin et al., 2007; Marée et al.,
2007; Nanni et al., 2010; Rajapakse, 2008; Shamir et al., 2008b).

The dataset contains approximately 100 images collected by
widefield fluorescence microscopy (with nearest neighbor decon-
volution) for each of 10 subcellular patterns. Nanni et al. (2010)

obtained the best reported results on this dataset, 96% accuracy,
using a combination of texture and other features.

2.2.2 Locate endogenous and Locate transfected These images
were collected by widefield microscopy to detect 10 endogenous

proteins or 11 transfected proteins (Hamilton et al., 2007). Each

dataset contains approximately 50 images for each subcellular

patterns.

2.2.3 Locate Confocal Aturaliya et al. (2006) presented a col-
lection of mouse membrane-bound proteins imaged with con-

focal microscopy. The images are available online in the locate

database (Available at http://locate.imb.uq.edu.au/). It consists

of 6985 images of 2047 different mouse proteins expressed in

HeLa cells. The images were manually annotated and most pro-

teins are labeled with more than one location. We are not aware

of previous work in automatic classification of these images.

2.2.4 Image Informatics and Computational Biology Unit
(IICBU) 2008 Benchmark The IICBU 2008 collection of data-
sets includes several collections of bioimages with different prop-

erties, which was intended for testing computer vision algorithms

(Shamir et al., 2008a) (The datasets are available at http://ome.

grc.nia.nih.gov/iicbu2008.).
We used the fluorescent microscopy datasets (the collection

includes other modalities). This collection includes the HeLa

2D dataset, but it includes a version without dna channel. Our

experiments were on the original, two channel, dataset.

2.2.5 Human Protein Atlas The Human Protein Atlas (HPA)
contains a collection of confocal images of immuno-stained pro-

teins in human cells, with visual annotation (Barbe et al., 2008).

We used those images where the visual annotation is to a single

location class (Li et al., 2012a, b).

3 MATERIALS AND METHODS

3.1 SURF-Ref

Speeded-Up Robust Features (SURF) are calculated by a two

pass algorithm. The first pass detects interest points by using an

approximate Gaussian blob detector. These interest points are

localized in both space (i.e. at a specific pixel location) and scale

(i.e. they have an automatically determined size). The second

pass computes 64 descriptors at each interest point.

Table 2. Dataset statistics

Name Number

of

images

Number

of

classes

Reference

RT-widefield 1382 10

RT-confocal 304 10

HeLa2D 862 10 Boland and Murphy, 2001

LOCATE-transfected 553 11 Hamilton et al., 2007

LOCATE-endogenous 502 10 Hamilton et al., 2007

Binucleate 41 2 Shamir et al., 2008a

CHO 327 5 Shamir et al., 2008a

Terminalbulb 970 7 Shamir et al., 2008a

RNAi 200 10 Shamir et al., 2008a

HPA 1842 13 Barbe et al., 2008

Note: The first two datasets, from the RandTag project, are introduced in this

article; the others were previously described elsewhere.

Table 1. Properties of RandTag datasets

UL NO N M G Cyto PM Lyso Cytosk ER

Widefield

Number of proteins 12 5 14 8 3 10 3 4 9 3

Number of images 254 113 255 175 63 155 51 69 197 50

Confocal

Number of proteins 5 3 8 12 4 8 3 3 18 3

Number of images 20 17 40 60 16 34 12 12 80 13

Note: UL, unlabeled; NO, nucleoli; N, nuclear; M, mitochondria; G, Golgi; Cyto,

cytoplasmic; PM, plasma membrane; Lyso, lysosome; Cytosk, cytoskeleton; ER,

endoplasmic reticulum.

Shown are number of proteins (first line) and images (second line) per class.
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SURF works on a single channel (a gray-scale image), while

bioimages are frequently multichannel: in addition to the pri-

mary channel, one or more reference channels are often acquired

in parallel. Typically the primary channel is a protein image and

a nuclear marker is used as a reference. SURF as presented in the

literature can only be applied to the primary channel, discarding

valuable information.
The protocol to incorporate the reference information is as

follows: run the point detection on the primary channel and com-

pute feature descriptors on both channels independently. The fea-

ture descriptor for each point is then the concatenation of both

descriptors.

3.1.1 Baseline feature sets As a baseline feature set, we used a
global feature set, which includes Haralick texture features

(Haralick et al., 1973), parameter-free Threshold Adjacency

Statistics (Coelho et al., 2010b; Hamilton et al., 2007), object

and skeleton features (Boland and Murphy, 2001), and overlap

features (Newberg and Murphy, 2008).

3.2 Classification

Computing local features leads to several hundred descriptor

vectors per image. To use these in classification, we clustered

the descriptor vectors. This process assigns each descriptor to a

cluster index. We represent an image as a normalized histogram

of membership in the various clusters (Willamowski et al., 2004).

This is known as the ‘‘bag of visual words’’ model.
The first step is to obtain a set of k centroids, using k-means.

This algorithm takes two parameters: k, the number of clusters;

and an initial set of centroids. This is implemented by setting the

random number generator seed to different values and randomly

selecting elements. For efficiency, centroids were obtained from a

fraction (1/16th) of the data. All feature vectors are then assigned

to the closest centroid. The resulting histogram can then be

used with a standard support vector machine (SVM) classifier.

Figure 2 provides an overview of the method.

As Figure 3 shows, there is a large variation in accuracy for

different choices of the random seed even for the same value of k:

the difference between the highest scoring and the lowest can be

as high as six percentage points. Furthermore, as Figure 4 shows,

the typical solution of minimizing the value of the Akaike infor-

mation criterion (AIC) introduced by Akaike (1974), will not

necessarily lead to a high accuracy. In fact, high AIC leads to

high accuracy.

Given the results in Figures 3 and 4, we used k ¼ n=4 clusters,

where n is the number of images in the training set. For the RT-

widefield dataset shown in the Figure, this corresponds to circa

310 clusters. Supplemental Figure S1 repeats the calculation for

the other datasets and confirms the value of this rule. We used a

different random initialization for each point.

The models learned are SVM based after feature normaliza-

tion and selection using stepwise discriminant analysis (Jennrich,

1977a, b). A radial basis function kernel is used for the SVM,

and an inner loop of cross-validation is used to select the hyper-

parameters. For the Locate database, which is a multilabel data-

set, we used a separate classifier per label; for all other datasets,

we used the ‘‘one versus one’’ strategy to convert binary classi-

fication into multiclass learning (These are the default settings

Fig. 2. Overview of local feature-based classification. The training set is subsampled and centroids are obtained from this smaller dataset. All the training

points are then projected to their nearest centroid and a SVM is trained to classify the per-image histograms. At testing time, the same centroids and

SVM are used

Fig. 3. Results of classification as a function of the number of clusters k.

Each dot is the result of one clustering of the data (differing by a different

number of clusters and a different initial set of clusters). The solid line is

the baseline accuracy (using global instead of local features)
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for the milk Python machine learning library used in this work,
no settings were changed or tuned).

3.3 Significance computation

For the measurement of statistical significance, we used a
Bayesian approach. Given a dataset of size n, on which two al-

gorithms correctly classify c0 and c1 elements, respectively, we
assume that each algorithm has an underlying accuracy of ri and

compute the Pðr04r1jc0, c1, nÞ, the probability that the first al-
gorithm is better than the second one. We also assume that the

performance of the algorithms is independent,

pðc0, c1, njr0, r1Þ ¼ pðc0, njr0Þpðc1, njr1Þ, ð1Þ

and compute

R 1
0

R 1
0 r04r1½ �½ �pðc0, njr0Þpðc1, njr1Þdr0dr1
R 1
0

R 1
0 pðc0, njr0Þpðc1, njr1Þdr0dr1

: ð2Þ

To be able to numerically obtain a value for (2), we model the
accuracy of each classifier with a binomial distribution:

pðc, njrÞ ¼ rcð1� rÞn�c: ð3Þ

In this framework, higher values are better, which is the opposite

of the traditional statistical practice. Therefore, we report
1� Pðr04r1jc0, c1, nÞ as a significance value. If the assumptions

(1) and (3) are accepted, this significance value is the probability
of making a Type I error (i.e. erroneously rejecting the null
hypothesis that r0 � r1).

The Locate database needs to be handled differently as its
proteins are annotated with multiple labels. The system we

built learns a binary classifier for each label and, at evaluation
time, outputs all the labels whose corresponding binary classifier

returned a positive label. Each binary classifier was learned in-
dependently. For evaluation, the above framework is not directly

applicable and we measured and report the F1 score.

3.4 Cross-validation

All results were obtained using cross-validation. Ten-folds were

used, except in the cases where the smallest class had less than

10 objects. In that case, the number of folds was set to the min-
imum class size.
When handling the RandTag datasets with multiple images of

the same protein, we can perform cross-validation in two ways:

(1) Per image, in which we group the images into 10-folds
without taking the depicted protein into account.

(2) Per protein, in which we group the proteins into 10-folds.
In this setting, there were never any images in training and

testing from the same protein. Accuracy is still reported on
a per-image level (the fraction of images that were cor-
rectly classified).

Software All software presented was developed in Python and
Cþþ and incorporates code from dlib (Dlib’s webpage is at

http://www.dlib.net) by David King and LIBSVM by Chang
and Lin (2001) for feature computation and classification, re-
spectively. The software is designed to be easily reused in new

datasets (Coelho, 2013).

4 RESULTS

4.1 Generalization to new proteins

As described above, the RandTag datasets have images from

several proteins in each dataset. Cross-validation over proteins
is a stricter test of generalization capabilities and it was expected
that it would lead to lower accuracies than the cross-validation

over images (where training and test sets have different images
of the same labeled protein). Table 3 shows that the resulting
difference in accuracy is large: a drop of 22 percentage points

(84–62%).
Even with multiple proteins per class, having examples from

the same protein in training and testing results in high measured

accuracies. These values (91–88%) are close to what is typically
reported in subcellular location problems.
However, when results are evaluated using the stricter

cross-validation protocol, accuracy values are much lower,
circa 60% for the baseline results. The differences in results
with the two forms of cross-validation are statistically significant

(at the 10�51 and 10�10 levels, for the widefield and confocal
datasets, respectively).
The HPA dataset also contains multiple proteins per class and

a small number of images of each protein, often only two.

Fig. 4. Results of classification as a function of the Aikake information

criterion. Each dot is the result of one clustering of the data (differing

by a different number of clusters and a different initial set of clusters).

Note that AIC is typically minimized

Table 3. Comparison of per-protein and per-image cross-validation

Dataset Method Baseline SURF-refþ

baseline

RT-widefield Per image 84.2 91.1

RT-widefield Per protein 61.6 70.3

RT-confocal Per image 83.9 88.8

RT-confocal Per protein 59.9 65.5

HPA Per image 76.1 82.8

HPA Per protein 68.2 78.3

Note: Shown are accuracies, in percentage, obtained either with per-protein or

per-image cross-validation on two feature sets.

Determining the subcellular location of new proteins
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Therefore, we used 2-fold cross-validation. The results in
this dataset confirm that performing cross-validation per pro-
tein results in lower accuracy than cross-validating per image.

The difference of 12 percentage points is significant at the 10�7

level.

4.2 SURF-ref

Table 4 summarizes the results obtained. On five of the
datasets, using SURF variations shows a statistically signifi-
cant improvement over the baselines used. On the other

datasets, the results are not statistically distinguishable from
the baseline.
The worst results are obtained in the RNAi dataset, where

local features alone perform much worse (significant at the
2:5� 10�8 level). However, once the baseline is added, the results

are indistinguishable from the baseline. Therefore, we recom-
mend the use of all features combined.

4.2.1 Computational Costs SURF-ref is efficient in terms of

computational time. On average, our implementation requires
7 s per image for both interest point detection and feature
descriptor computation. Images in this case are 768� 1024

pixels large.
As part of interest point detection, each point is ranked ac-

cording to a metric of how strongly it matches the approximate
filter used—see the original SURF article for details (Bay et al.,
2008). For large datasets, the computed feature data can be over-

whelming. Therefore, we limited the number of interest points
per image to 1024 (which are the 1024 highest matches according
to the metric alluded to above). The traditional SURF consists of

64 descriptor values. In addition, we save the location, scale,
angle and match strength for 70 floating point values per interest
point.

5 DISCUSSION

This work frames the subcellular location problem as recognizing

different proteins in the same class. While this may have been

implicit in previous work, it was not directly tested by datasets

with a single representative protein per location class.
We introduce two new datasets, which contain multiple pro-

teins per class (and multiple images per protein). We observed

that when cross-validation was performed over proteins, the re-

sulting accuracy was much lower than when it was performed

over images (where it is comparable with other datasets). This is

intuitive as it is an easier problem to recognize proteins that are

in the training set than proteins that are only in the same class (in

particular, in the first case, it is possible that the system distin-

guishes the proteins by artifacts of the tagging or variation in

subpatterns).
Our data show that it is incorrect to assume that the high

accuracy values obtained in datasets composed of multiple

images of the same protein imply that the system would gener-

alize well to other proteins in the same location class. Our data-

sets are publicly available. There is still a lot of room for

improvement in accuracy and we hope that other researchers

will test their methods on this harder problem.

We also introduce a new methodology for classification of

subcellular location patterns, which is based on interest point

detection and local feature analysis. We developed a protocol

to integrate the information in reference channels (which are

typically acquired in parallel to the protein of interest). We im-

plemented this method based on SURF, but the protocol is a

generic method and could be applied to other local feature sets,

such as scale-invariant feature transform (Lowe, 1999) or any

combination of detector and descriptor. On our new datasets,

these methods performed better than the traditional whole-field

features by 10 percentage points (a difference that is highly stat-

istically significant).
We tested these features on traditional datasets as well. On

these, the baseline methods already perform well and there was

less room for improvement. In four cases, the results are statis-

tically indistinguishable from the baseline. It should be noted,

though, that in no dataset did we observe that adding the local

features lead to a statistically distinguishable worse outcome.

These features have the further advantage that they are com-

puted on the raw images without any pre-processing such as

background correction or contrast enhancement. No tuning is

necessary for adapting to new datasets and it is flexible for ap-

plication to large datasets. Therefore, we recommend that local

features with reference information be added to the standard

toolkit for bioimage classification.
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