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he completion of the Human Genoeme Project will be no more

than an important milestone in our effort to understand how
billions of DNA nucleotides give rise to a human being. After ac-
cumulating raw DNA sequence information, it will be necessary
for the scientific community to dedicate many more years to
characterizing each gene and its protein product. Structural char-
acterization will require the use of NMR [1], x-ray crystallogra-
phy [2], and other techniques, Biochemical assays will be
necessary to discover the function of each protein and to place
each protein in the appropriate cellular pathway(s). Above all,
these data will have to be organized and combined in ways that
make them useful in further research (see [3], for example). Fora
variety of reasons, including the sheer size of the human genome,
this information will need to be quantitative in nature so that
analysis can be both automated and systematic.

One area of protein characterization that is not yet developed
but which can be anticipated to be extremely useful in the
post-genomic¢ era is the study of protein localization (i.e., where
within a particular cell type does one find a given protein?). As
with analysis of protein structure and function, two comple-
mentary approaches to discovering the subcellular location of
newly identified proteins can be envisaged: prediction and ex-
perimental determination. References addressing both predic-
tive and experimental approaches to protein characterization
are included in Table 1.

Given that the subcellular location is known even in the most
general terms for only a small fraction of all proteins, the accu-
racy and completeness of predictive systems is currently limited.
This leads to a compelling need for automated approaches to ex-
perimentally determine subcellular localizations. The starting
point is a systematic, quantitative method for describing protein
localization patterns.

A numerical description of protein localization is fundamen-
tally usefu! because it provides information about each protein
that is complementary to the sequence and structure data that are
currently available, and because it obviates the need to describe

Table 1. Predictive and Experimental Analysis of
Protein Structure, Function, and Localization

Predictive Analysis

Sequence homology searches [4]

Protein structure prediction {5, 6]

Functional class prediction [7, 8}

Protein localization prediction [9, 10, 11]
Experimental Analysis

Proteln structure determination [12, 13}
Determination of protein function - biochemical analysis

Tissue/developmental expression analysis [14, 15]
Determination of protein localization [18, 17, 18)
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protein localization subjectively, as is currently the practice. Fur-
thermore, quantitative analysis facilitates repetition of an experi-
ment by others and can provide a systematic approach to
answering a question where otherwise there would only be sub-
jective judgements, With numerical output from an experiment,
it is possible to quantitate the confidence one has in the result, or
to assess the statistical significance of results obtained under dif-
ferent conditions. Lastly, the possibility that automated methods
may provide biological insights not readily available from visual
examination of localization patterns must be considered.

Automating the analysis of protein localization will bring
some of the same benefits that have come with the automated
analysis of protein and DNA sequences. In the time before
quantitative sequence analysis, comparisons could only be
done subjectively (i.e., the assessment of similarity between
two sequences was done by looking at them). Today, on the
other hand, it is possible to send a new sequence to a variety of
database servers (e.g., http://www.ncbi.nlm.nih.gov/BLAST/
and http://www .ncgr.org/) and, in short order, receive a list of
existing sequences that are similar to it.

Although the antomated analysis of protein localization may be
more complex than the automated analysis of sequences, the
benefits to be derived are the same. For example, it is not
far-fetched to imagine a time in which it will be possible to'send
images of a new protein’s localization to a database and obtain a
list of proteins that localize in a similar manner. The ability to
identify known proteins with similar sequence and similar local-
ization is a significant advance over the current state of the art.
Furthermore, as we move beyond the initial stages of the Human
Genome Project (i.e., mapping and sequencing), it is becoming
increasingly clear that we need structural, functional, and local-
ization information to accompany the raw sequences,

Some recent work with the goal of introducing quantitative anal-
ysis to the description of protein localization in a way that is bio-
logically useful is described below. The usefulness of the
quantitative descriptions is assessed by using those descriptions to
address biologically relevant questions. Two applications devel-
oped thus far include the classification of protein localization pat-
terns into known categories and the selection of a typical image
from a setin which the images depict protein localization patterns.

The techniques used to develop these applications are drawn
from the fields of fluorescence microscopy, pattern recognition,
and machine learning. Images depicting the localization of a par-
ticular protein are generated by specifically labeling that protein
with a fluorescent marker and then collecting images with a mi-
croscope. The availability of antibodies directed against many
cellular proteins makes it possible to generate images for a wide
variety of protein localization patterns. Sample microscope im-
ages are shown in Fig. 1.
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Pattern Analysis

The automated analysis of images most frequently involves four
common steps, regardless of the desired final results (see Fig, 2).
These steps include image collection, image restoration (if nec-
essary), image processing, and numerical feature extraction. The
final step in this process can then be one of a variety of pat-
tern-analysis techniques.

Fluorescence images to be analyzed can be acquired using
any of a variety of microscope modalities followed by appro-
priate image restoration methods. Image restoration consists
of those steps intended to turn the output from the microscope
system into an image that better represents the original sam-
ple. Once the images are acquired and reconstructed, they usu-
ally need to be processed further. In this case, outcomes
desired from image processing include identification and iso-
lation of single cells in an image (segmentation} and selection
of pixels of interest via thresholding.

Once the images have been processed, it is necessary to “de-
scribe” the pattern in the image nurnerically. This step is com-
monly referred to as feature extraction and involves the
calculation of a small number of values (frequently 5-50) that are
intended to summarize the infermation in the image more con-
cisely than the individual pixels. Examples of features that might
be useful for describing protein localization patterns are the num-

ber of fluorescent objects in a cell (where an object is defined to -

be a group of contiguous pixels that all have an intensity above a
threshold value) and the average area of those objects, While
such a description is clearly biased by the choice of features (e.g.,
the two example features described above do not take into ac-
count where the objects are in the cell), the bias is explicit and can
be incorporated in subsequent analysis and discussion. Once the
features have been calculated, it is possible to use them to per-
form a variety of pattern-analysis tasks.

Classification of Protein Localization Patterns

Fluorescence images such as the one in Fig. 1(B) represent the lo-
calization of a single protein within a cell. By calculating nu-
meric features to summarize these images, one is in fact
describing the localization pattern of the protein. One method for
assessing the biological utility of these descriptions is to develop
a system that is able to recognize new images containing the
samme pattern.

An obvious use for this approach can be found in the field of
high-throughput screening. To determine which of 1,000 potential
drugs serve to prevent the translocation of a protein from one cel-
lular compartment (the endoplasmic reticulum - ER) to another
(the Golgi), it would be advantageous to have a system that can au-
tomatically recognize, and therefore classify, images depicting the
fluorescently tagged protein’s ER localization pattern and its
Golgi localization pattern. After applying the potential drugs to
cultured cells and labeling the protein of interest, only those sam-
ples that are classified as “ER” (i.e., those in which the drug has
blocked trafficking of the protein) need be studied further.

Classification of protein localization patterns can also facilitate
the automation of microscope function. As an example, an inves-
tigator studying the disassembly and reassembly of the Golgi ap-
paratus during cell division [19] might wish to study drugs that
inhibit the process. An automated microscope might be pro-
grammed to find all cells displaying a fluorescence pattern char-
acteristic of a dispersed mitotic Golgi apparatus and then, for
example, image those cells over time after photoactivating a
caged drug in half of them (to explore the role of the drug’s target
in mitotic reassembly).
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The feasibility of automated classification has been demon-
strated by the development of a system that is able to classify the
localization patterns characteristic of five cellular molecules
(proteins and DNAY} in Chinese Hamster Ovary (CHO) cells [16].
Images were acquired on an epifluorescence microscope after
the cells had been fixed, permeabilized, and labeled with appro-
priate fluorescent reagents (antibodies conjugated to fluorescent
dyes, and the DNA intercalating agent Hoechst 33258). The la-
bels used were directed against a Golgi protein (giantin), a
lysosomal protein (LAMP2), a nuclear protein (NOP4), a
cytoskeletal protein (tubulin), and DNA. Note that the same anal-
ysis described here can be done with live cells if appropriate la-
bels (e.g., green fluorescence protein - GFP) are available for the
molecule of choice. The images were processed to remove
out-of-focus and background fluorescence and cropped to allow
analysis of single cells. Numerical features (Zernike moments
[20] and Haralick's texture features [21]) were then extracted
from the processed images. These particular features were cho-
sen based on their invariance to image rotation and for their abil-
ity to describe a variety of patterns efficiently. They were also
selected without consideration of the particular protein localiza-

1. Sample images collected from a multimode (i.e., capable of
automated switching between transmitted and fluorescence
illzmination of the specimen) microscope, A transmitted light
(differential interference contrast) image (A) is included to
show the full extent of the cell. A fluorescence image (B) of the
same cell depicted in A shows only those parts of the cell that
were labeled with a fluorescently conjugated antibody against
a mitochondrial protein, Scale bar = 10 pm.
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tion patterns available at the time. While it would be easy to de-
sign features to discriminate the initial five classes, it is unlikely
that a feature set tailored to those classes could be used to ade-
quately describe new localization patterns added later.

Once the images are described by the numerical features, pat-
tern-recognition techniques are brought to bear on the problem.
Briefly, once a protein localization image has been described by
its features, it constitutes a single point in an n-dimensional fea-
ture space, where # is the number of features describing each im-
age. The basic goal of pattern recognition is to generate
boundaries in the feature space that separate the classes from one
another. Classification schemes include statistical methods [22],
decision trees [23], and neural networks [24]. A large number of
such classifiers have been designed and tested with an almost
equally large set of problems, including target recognition for the
military, parts inspection for manufacturers, and handwriting
recognition for the U.S. Post Office.

Of the classifiers we investigated for application to this prob-
lem (linear discriminant analysis, classification trees, and a
backpropagation neural network), the backpropagation neural
network proved to be the best atrecognizing images from the five
classes described above. After being trained on one subset of im-
age feature data, a neural network was able to correctly identify
an average of 88% of previously unseen images. This rate is im-
pressive given the heterogeneity between individual cells, even
within a particular class (i.e., not all giantin localization patterns
are identical—there is considerable variation from one cell to an-
other). This work is currently being extended to a set of 10 local-
ization patterns and a new numerical feature set that is designed

to utilize biological knowledge in describing the localization of
the proteins. Early results indicate that this new system can be
used to correctly classify a-set of 10 previously unseen images at
arate of 99% (Boland MV, Murphy RF - manuscript in prepara-
tion). Classification of sets depends on the members of the set be-
ing drawn from a homogeneous: population (e.g., cells that were
labeled at the same time with the same fluorescent markers), and
it is accomplished by first classifying each member of the set in-
dividually. The classification for the set is then defined to be the
class to which a plurality of its members belongs. An unknown
class is included to handle cases in which two classes are equally
common. The same classification system is able to correctly rec-
ognize 83% of individual images. ° ’

Selection of a Representative Localization Pattern
A second application of pattern analysis to protein localization
patterns is the selection of a representative from a set of patterns.
This is believed to be a novel application of pattern analysis that is
not limited to biological images. Investigators are regularly re-
quired to choose a single image from a collection for presentation
or publication. The often unspoken implication of this choice is
that the selected image is representative of the set, The problem
with this approach is that there is no way to describe the biases
(both conscious and unconscious) of the investigator in making
the selection. Furthermore, without the benefit of quantitative
analysis, this choice is not repeatable by other investigators, and
subsequent results and discussion are not rigorously comparable
to-each other. One might argue that any numeric description of a
pattern is biased by the formulas used to generate the numbers.

Fortunately, however, this bias is almost

always explicit, whereas the subjective bi-

Epifluorescence Microscopy

1. Image Acquisition Confocal Microscopy

Epifluorescence Microscopy, Through Focal Series

Other Fluorescence Imaging Techniques

ases of individual investigators are im-
plied, at best, and unstated, at worst.
Automated selection of representativeim-
ages, particularly those depicting protein
localization, will be useful for selecting

images- for publication, for summarizing

2. Image Restoration

Computational Deconvolution
Background Subtraction

Coriection for Uneven lllumination
Correction for Camera Response

the contents of a protein localization data-

base with a handful of images, and for fa-

cilitating the analysis of experiments by

* providing the investigator with new in-
sight into the data. ‘

With these goals in mind, a system has

been developed that is able to systemati-
cally choose a representative image from

Y

) Identification of Single Cells
3. Image Processing

Thresholding

a set in which each image depicts the lo-
calization of a protein in a single cell
[17]. Using the images and features gen-

erated for the classification study
(above), methods were investigated for

Y

4. Feature-Extraction

Morphological Features
Texture Features
Moment-Based Features

assigning a measure of typicality to the
images in a set. The first four steps in this
process (i.e., image collection, image
restoration, image processing, and fea-

ture extraction—see Fig. 2) are identical
to those used for classification. As men-

4Y

5, Pattern Analysis

Pattern Recognition

Other Analysis...

Representative Image Selection

tioned above, after feature: extraction,
each image can be thought of as a point in
n-dimensional space, where 7 is the num-
ber of features used to describe the im-

age. 'Intuitively, the most typical (or

2, Overview of pattern-analysis techniques applied to cellular protein localization,
General steps in the process are on the left and examples specific to the analysis

described here are on the right.
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representative) image of a set has been
defined to be that image that falls closest
to the middle of the distribution of im-
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ages in feature space (see Fig. 3). The distance metric used to find
the image closest to the center of the distribution must be chosen
wisely, however, and it turns out that statistically robust methods
of calculating distance are crucial to the success of typical image
selection. These robust methods [25] are able to recognize and
then ignore spurious outlier points that tend to bias the estimates
of the population mean and covariance (see Fig. 3). For the im-
ages used in this work, outliers consisted of localization patterns
from sick or damaged cells, cells in mitosis, cells that labeled
pootly, or cells not in proper focus. Since the multivariate mean
is defined to be the center of the population for the purposes of
distance calculation, it is important that the estimate of the mean
not include features from unusual patterns. With such distance
metrics in place, reasonable results were obtained for four differ-
ent classes of fluorescence images [17].

Satisfactory evaluation of the methods developed for choos-
ing a representative pattern requires two approaches. First, a
statistical test was implemented to confirm that the method pez-
formed as expected. Briefly, a chi-squared test was used to de-

termine whether, in the case of an intentionally contaminated

data set, the images of the majority class were assigned typical-
ity scores higher than those assigned to the contaminant class
(see [17] for details). Second, we tested the methods by subjec-
tively evaluating the localization patterns ranked as most typi-
cal, asking whether (without the benefit of the automated
system) we might have picked them as most typical as well. Fig-
ure 4 includes the three most typical (A, B, C) and three least
typical (D, E, F) localization patterns from the set of lysosomal
protein patterns used in our classification study (the images are
available at http://murphylab.web.cmu.edu/data/).

In the case of these data, the most typical patterns all depict the
kind of localization that one would expect from a lysosomal
protein: many vesicles distributed throughout the cytoplasm,
The least typical images, on the other hand, are all less than
ideal for one reason or another, Images I and E both contain a
single very bright object that artificially dominates the image.
Image F had a weak signal to begin with and, after processing,
depicts only a few objects. By using both objective and subjec-
tive approaches to testing, it was possible to take advantage of
the quantitation,while being reassured by

quence, structural, functional, and localization information for
each gene, and each of those constituents has its own levels of
organization as well (e.g., functional information for a protein
can be obtained at the molecular, cellular, and organismal lev-
els). Computational analysis must be able to handle all these
data in a reasonable amount of time. The second principle,
which has been alluded to here, is that analysis techniques must
incorporate data from a variety of sources. Archiving and in-
dexing of sequence data, for example, must include sequences
from multiple organisms and from diseased and healthy states
to be maximally useful. The other levels of information, includ-
ing structure, function, and localization will need to be simi-
larly organized.
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3. The effect of outliers on the calculation of a population
mean, In this simplified example, in which each image is
described by two features, the presence of outliers (points
marked with ‘x*) causes the overall mean (B) to be shifted
towards the outliers. Removal of the outliers allows proper
estimation of the mean of the majority population (A).

results that met biological expectations.

A service to demonstrate these typical
image selection methods has been devel-
oped (http://murphylab.web.cmu.edu/ser- |
vices/TypIC/). It allows an investigator to
upload a collection of images and, after
processing, returns a list of the images
ranked by their typicality.

Concluding Remarks

This work addresses two principles that
will be integral to the post-genomic or
proteomic era (i.e., after sequencing). The
first is that any analysis of data from or re-
lated to the Human Genome Project will
need to be designed with high-throughput
in. mind. Just the sequence information
will encompass some 3 billion nucleo-
tides, and that does not include informa-
tion about introns, exons, promoters, and
many other features of interest. The vol-

ume of information that must be synthe-
sized is even larger than the genome itself,
and it is diverse in nature. It includes se-
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4, The most (A-C) and least (D-F) typical images from a collection of 97 fluorescence
images of the distribution of LAMP2, a membrane protein found predominantly in
lysosomes, Scale bar = 10 pm.
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We have demonstrated two different applications of pattern
analysis to protein localization patterns from cultured mamma-
lian cells, We have further shown that those applications are bio-
logically useful and that they are consistent with the principles
just described. The classification system is able to recognize pre-
viously unseen patterns as belonging to a known class, and this
will clearly be useful in the area of high-throughput screening
based on protein localization. The typicality work demonstrates
that it is possible to objectively select a pattern to represent a set.
Objective selection of one or more representatives will be an im-
portant method for summarizing potentially large data sets con-
taining a variety of types of information.

The results we have obtained are promising, but also very early
in the development of this field. Precisely because of this imma-
turity, however, there are many interesting and novel questions
to ask and many challenging problems to selve.
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