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Abstract
There is extensive interest in automating the collection,
organization and analysis of biological data.  Data in the
form of images present special challenges for such efforts.
Since fluorescence microscope images are a primary
source of information about the location of proteins
within cells, we have set as a long-term goal the building
of a knowledge base system that can interpret such images
in online journals.  To this end, we first developed a robot
that searches online journals and finds fluorescence
microscope images of individual cells.  We then
characterized the applicability of pattern classification
methods we have previously used on images obtained
under controlled conditions to images from different
sources and to images subjected to manipulations
commonly performed during publication.  The results
indicate the feasibility of developing search engines to
find fluorescence microscope images depicting particular
subcellular patterns.

Introduction

The dramatic increase in biological knowledge
(especially with respect to the sequences and structures of
genes and proteins) over the past 20 years, combined with
advances in computer technology, has led to the creation
of a number of biological databases.  These include
databases that focus on a particular type of information
(e.g., sequences, structures, genome maps) for all
organisms, as well as those that combine various types of
information for a single organism.  The information in
these databases is largely incorporated by computer-
generated links to relevant entries in other structured
databases or entered by hand by scientists in the relevant
fields.  Such curated databases do not typically capture the
supporting evidence for each entry and usually do not
allow for uncertainty, alternative views or conflicting
evidence.  There has therefore been interest recently in the
creation of self-populating knowledge bases that can
extract and store assertions from published literature in an
automated fashion.  Such knowledge bases can serve not
only as resources for practicing biologists but also as input

for systems that can generate new hypotheses using data
mining methods.  They can also serve as a starting point
for modeling and simulation systems that incorporate
information beyond that in current structured databases.

A significant part of this task involves information
extraction from unstructured text, a burgeoning area of
computer science research.  Recent work in this area
relevant to molecular biology includes a supervised
learning approach to extraction of statements regarding
protein location from MEDLINE abstracts [1] and the
EDGAR system for extracting assertions about drugs and
genes related to cancer from the biomedical literature [2].
However, much important information in biological
literature is in the form not of text but of figures, and little
published work has been done on automating the
extraction of information from them.  We report here
initial work aimed at accomplishing this task for a subset
of such figures, fluorescence microscope images.

The starting point for this work is our previous
development of numerical features that can describe
complex subcellular patterns in such images and neural
network classifiers that are capable of recognizing all
major subcellular structures in at least one cell type [3-6].
For this purpose, we have developed Subcellular Location
Features (SLF) that utilize geometric moments, texture
measures, and morphological image processing [5, 6].

The work described below addresses two distinct
tasks.  The first is to extract all figures from articles in on-
line journals and to identify those that depict fluorescence
microscope images.  The second is to identify numerical
features that adequately capture information about
subcellular location in such images without being
inappropriately sensitive to variation in image resolution
and any manipulations that the image may have been
subjected to during publication.

Collecting Images from Online Journals

On-line Article Downloading and Figure
Extraction.

As a first step, we implemented a web robot that
allows users to automatically retrieve online journal
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articles that may have relevant images.  The robot utilizes
the search engine of “PubMed” (http://www.pubmed.gov/
entrez) to find articles matching a PubMed search string
and downloads as PDF files the subset of those articles
locally contained in “PubMed Central” (up to a maximum
number of articles set by the user).  For illustration, we
have used the query “Golgi” to search for images that
depict the subcellular patterns of Golgi proteins and
limited the number of PDF files returned to 100.

Once the PDF files matching the query were
downloaded, we extracted all figures and captions using
the “PDFtoHTML” tool (http://www.ra.informatik.
unistuttgart.de/~gosho/pdftohtml), which we had modified
to add the capability of associating figure images with
their corresponding captions. Due to the different layouts
of PDF files, the tool is not perfect. Some figures could
not be correctly extracted and some extracted images did
not have their corresponding captions.  For the “Golgi”
query, visual inspection of the downloaded articles
indicated that there were 745 actual figures contained in
the 100 articles (each with a caption).  The program
extracted 581 of what it considered to be figure-caption
pairs, but upon visual assessment only 571 of these
proved to be correctly matched figure-caption pairs.  From
this test data, the precision of the extraction process
(defined as number of correct predictions divided by
number of total predictions) was 98% while the recall
(defined as the number of correct predictions divided by
the number of actual figure-caption pairs that could have
been found) was 77%.

Boundary Detection and Recursive Panel
Splitting

Having successfully extracted figures with high
precision the next step was to divide the figure images
into their constituent components.  Nearly all extracted
figures contained several panels, since similar conditions
are often presented together so that they can be compared
and contrasted.  More complicated multiple panel figures
were also frequently encountered, containing
combinations of microscope images, gel pictures, and
charts.  Therefore, it was necessary to split each figure
into its composite panels before we could attempt to
display or interpret any particular panel.  For this purpose,
we utilized a recursive panel splitting method based on
boundary detection.

Although figures may have different layouts, they
have some properties in common. Most panels differ in
intensity from their boundaries. Thus, panels that are
largely black (such as fluorescence micrographs) typically
have a white boundary and panels that are largely white
often have black boundaries.  The boundaries consist
almost always of straight lines.  Accordingly, we used a
simple “projection method” for boundary detection.

For each figure, the modal pixel value of the entire
image was calculated.  If this value was above 127 (the
modal pixel value is closer to white than black), the figure
was skipped as likely not containing any microscope
images.  For the remaining figures, largely white outside
boundaries were removed by successively deleting rows
or columns on the edge of the image when their average
pixel value was greater than 180 (all images were
retrieved in 8-bit JPEG format so the maximum pixel
value was 255).

Projections were then calculated by summing the
pixel values of each figure along horizontal and vertical
directions.  As illustrated in Figure 1, the positions where
there are steep changes in the projection correspond to
boundaries. To find accurate panel boundaries, we only
need to detect the sharply changing positions in the
projections, or more conveniently, to find peaks in the
differentiated projections.

For figures with complex panel structures like that in
Figure 1, some boundaries do not cross the entire image.
Therefore, simply cutting the figure through all
boundaries will generate more pieces than appropriate.
We therefore adopted a recursive approach in which the
figure is continuously split at the highest peak position in
either the horizontal or vertical direction, the projections
recalculated for the pieces, and the process repeated until
the highest peak is below a predetermined threshold value.

To evaluate the performance of the panel splitting
process, we used the first 100 figures of the 581 figures
resulting from the “Golgi” query.  The splitting routine
yielded 281 panels.  Each split panel was displayed
alongside the corresponding journal figure and identified
visually as either correctly or incorrectly split (we also
determined by visual inspection that there were a total of
344 panels).  Of the 281 panel images, 205 were
considered to be correct single panel images and the
remainder were either badly split panels or remnants of
edges.  This corresponds to a precision of 73% and a
recall of 60%.

Identifying Fluorescence Microscope Images

While figures in journals contain various types of
images (several kinds of microscope images, charts, gel
images etc.), our goal was to collect and analyze
fluorescence microscope images. Having split the figure
images into their constituent pieces or “panels”, the next
task was therefore to identify panels containing
fluorescence microscope images. We used a k-nearest
neighbor (kNN) classifier for this task.  For each image, a
histogram of pixel intensities was constructed with 64
equally-spaced bins ranging from the minimum to the
maximum pixel intensity in that image.  For classification,
each image was represented by a vector of the frequencies
in each of these bins.  A threshold value T (0<T<k) was
introduced to the kNN algorithm to explore the trade-off
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between precision and recall. A test image was considered
to be a fluorescence microscope image only if the number
of its k neighbors (from the training images) that were
fluorescence microscope image was larger than T.

We applied the leave-one-out cross validation method
on a set of pre-labeled 1586 single panel images (788
fluorescence and 798 non-fluorescence). Values of k from
3 to 21 were tested, with the best performance occurring
for a k value of 9.  For this value, a recall of 70% was
achieved with 100% precision and a precision of 97% was
achieved for a recall of 92% (for different T values).

We also checked the performance (for k=11 and T=5)
on the first 100 panels from the Golgi query.  Of these, 42
actually contained fluorescence microscope images and
38 of these were reported as such.  This corresponds to a
precision of 100% and a recall of 90%, confirming our a
priori expectation that identification of fluorescence
microscope images is relatively straightforward.

Removing Internal Image Annotations

One of the problems with microscope images from
online journals is that nearly all of them contain
annotations such as panel labels and arrows.  Such
annotations can be expected to confuse the pattern
analysis algorithms.  To remedy this problem, we
implemented an algorithm that detects annotations and
removes them by filling the area corresponding to the
annotation with background pixel values.

The detection relies on finding areas that are bright
and have sharp edges. "Bright" was defined as a pixel
value greater than or equal to 200 (generating binary
image A).  Edges were detected using a 3x3 sharpening
kernel with 8 in the center and negative one elsewhere.

The sharpened image was thresholded at 200
(yielding binary image B). Image C was generated as the

     

 

Figure 1. Detecting panel boundaries with projections and recursive splitting.  An example multiple
panel figure is shown to illustrate the splitting process.  The average pixel value across the figure
is shown for each position along the horizontal and vertical directions, along with the derivative
along the vertical direction.  These values were used to recursively separate the figure, first
horizontally between panels ABC and DEF, then vertically between panels A and B, B and C, DG
and E, and between E and F, and finally again horizontally between panels D and G.
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intersection of Images A and B, thus showing those
regions that were bright and had sharp edges.

Image C contained the edges of the annotations as
well as some noise. We noticed the noise consisted of
short line segments while annotation edges were
represented by longer continuous regions. While in
principle it may have been possible to remove the noise
by simply removing objects consisting of less than a
certain number of pixels, that approach would also have
removed some annotations because the line segments
making up the edges of some annotations (such as a letter
A) were sometimes disjoint. We therefore used a three-
stage process where we first removed line segments
shorter than 4 pixels to eliminate some of the noise. We
then closed the binary image using a 4x4 pixel structural
element to connect the disjoint sections making up the
edges of the annotations.  Finally we removed any objects
of size 25 pixels or less to delete any remaining noise.
This resulted in binary image D which contained simply
the edges of annotations in the form of closed boundaries.

In order to eliminate the annotations from the original
image it was necessary to have an image of the full region
of the annotations rather than just the boundaries. Image E
was created by filling image D.

Finally, to eliminate the annotations an intuitive
approach might have been to simply set the pixels in the
original image corresponding to the "on" pixels in image
E to zero (or some other fixed background value).
However, we found that it was impossible to find any
satisfactory fixed value because while most of the time the
annotations were on a dark background, sometimes the
background in the immediate area of the annotation was
fairly high. We therefore replaced annotations with the
most common pixel value in the immediate neighborhood
(within three pixels) of that annotation.

To evaluate the annotation removal step, we
examined the first 100 reported fluorescence microscope
panels from the previous step.  Of these, 71 actually
contained annotations.  The system recognized 70 of these
as requiring annotation removal, of which 47 had all
annotations correctly removed and an additional 11 had
nearly all removed.  This corresponds to a precision of
83% and a recall of 82%.

Automated Segmentation of Multi-Cell Images

Since many (if not most) published fluorescence
microscope images contain more than one  cell (and our
methods for classifying location patterns require images
of a single cell), our next step was to segment the multi-
cell images into single cell images.

At first the gray-level images were transformed to
binary images by an automated threshold method. The
resulting binary images contain objects which correspond
to the cells. The boundary between the cells was
generated by the “seeded watershed” algorithm of SDC

Morphology Toolbox for Matlab (SDC Information
Systems, Naperville, IL).

To evaluate the segmentation method, we utilized an
area-based difference measure weighted by image
intensity. We generated reference images using manual
segmentation and manual seeding.  The correctness of an
automatically generated region was judged by calculating
the percent of fluorescence in the area of overlap between
the automated and manual methods.  The automated
method was considered successful for a cell if 80% of the
fluorescence in the manually generated region overlapped
with the automatically generated region and if 80% of the
fluorescence in the automatically generated region
overlapped the manual one.

For the images returned by the “Golgi” query, we
chose a random subset of 100 panels from the panels
classified as fluorescence microscope images in the
previous stage.  Of this 100, 36 were ignored as being
badly split panels.  The remaining 64 panels contained
291 individual cells (cells touching the edge were
ignored).  The automated segmentation method generated
149 single cell images, of which 93 were considered to be
correct using the 80%/80% overlap criterion.  This
corresponds to 62% precision but only 32% recall.  When
a similar analysis was done for a "Tubulin" query, the
precision was 52% and the recall was 41%.  The results
indicate the difficulty of developing a general cell
segmentation method, and further work will be needed.

Interpreting Fluorescence Microscope
Images

The results shown so far demonstrate the feasibility of
finding fluorescence microscope images of individual
cells in online journals with reasonable precision. The
next task is to extract appropriate information from the
collected images so that statements can be generated
about their meanings.  An example of this task is to
classify patterns of subcellular distribution, as we have
done for images collected under controlled circumstances.
There are a number of challenges in doing this for images
from online journals.

1) The first challenge comes from differences in the
magnification and pixel resolution at which the image
was collected.

2) The second is coping with differences in sample
preparation, cell type, and microscopy method (wide
field, deconvolution or confocal).

3) The third arises from alterations in the images
introduced during the publication process, which
include image compression, resampling, and intensity
transformations.
The following three sections describe our initial

efforts to address each of these issues.
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Compensating for Differences in Pixel Resolution

The pixel resolution (micrometers per pixel) is one of
the most determining factors in how a cell image will be
interpreted by an automated analysis method such as a
classifier. Out of our previously developed SLF features
[6] there are four that are directly dependent on the scale
of the image. Luckily, microscope images published in
journals often have scale information included in the
figures. The images usually contain a scale bar and the
respective caption contains the number of micrometers
corresponding to the scale bar. Finding the pixel
resolution therefore was a matter of locating the scale bar
in each image, measuring its length in pixels and
extracting the appropriate number from the caption text.

To locate the scale bar, each image was first
thresholded using a high threshold (90% of maximum
pixel value). Object finding was then used to locate
continuous regions of above-threshold pixels. Each object
found was then considered as a candidate scale bar. The
candidates were filtered using a few simple rules to
constrain size and shape. Since a scale bar is almost
always a horizontally oblong rectangular bar, the size of
the candidates was constrained as follows: width/height
ratio of 3 or more, total width not greater than 90% of
image width and not less than 5% of image width. An
additional constraint was that the object pixels had to
cover at least 80% of the area of the bounding rectangle of
the object. This was to discard candidates that did not
have a nearly perfect rectangular shape even though they
met size constraints. Finally, after applying all of the
above constraints there was usually either one candidate
left (the actual scale bar) or none (frequently only one
panel per figure has a scale bar). If more than one
candidate was left, then the longest one was chosen, based
on the observation that there can be only one scale bar per
panel and that erroneous bars were generally smaller than
the real scale bar. This resulted in obtaining the pixel
width of the bar, which then had to be correlated with the
width of the bar in micrometers.

Whenever there is a scale bar in the figure, the
caption always contains information about its length in
micrometers in the form of a simple string such as “Bar =
20 µm.”, “Bar, 20 µm.” or, in the case where more than
one panel has a bar, “Bars, 20 µm.”. Therefore, to obtain
the number, the caption was searched for the word “bar”
or “Bar”, followed by an optional “s”. Then the following
number was taken to be the size of the scale bar, ignoring
intervening characters like “,” or “=”. The units were also
ignored and always assumed to be micrometers (due to
inconsistency of font usage for Greek characters such as
mu).

The remaining challenge in assigning a scale to each
panel was handling implied assignments. The two
simplest cases are: 1) each panel has its own scale bar, in
which case each assignment is explicit, or 2) there is only

one scale bar per figure, which implies that the same scale
bar applies to each and every panel in the same figure.
However, microscope image panels are frequently
arranged in rows and columns with only one scale bar per
row or column.  In such cases each scale bar was made a
candidate assignee for its respective row and column.
Simple conflict resolution was then used to determine
whether it should apply to the row or the column.
Occasionally one encounters more cryptic implied scale
bar assignments such as more than one bar per row and
more than one per column. Such cases were ignored and
no scale assigned to any panels in such figures.

In order to evaluate the scale bar finding module, we
examined a test set of 167 panel-caption pairs in which a
scale was present.  The scale bar finder reported a scale
for 110 of these panels, and the scale was correct for 84 of
these.  This corresponds to a precision of 76% but a recall
of only 50%.  Further work will be needed to refine the
scale finding algorithm.

Classification of Images from Different Sources

Since the goal of this work is the development of a
self-populating knowledge base containing classified
fluorescence images of protein localization patterns from
journal articles, such a system necessarily must be able to
consistently and correctly classify images of different cell
types, obtained using different equipment.  Additionally,
because the classification methods to be used here were
previously applied only to homogeneous image sets of a
given cell line and microscopy method, their applicability
to mixed sets was tested.  To this end, three sets of images
were merged, representing two cell lines (Chinese
Hamster Ovary (CHO), and HeLa) and two microscopy
methods (plane deconvolution and laser scanning
confocal).  Specifically, these were sets of CHO [4] and
HeLa images [6] both obtained via deconvolution
microscopy, and a set of HeLa images obtained using
laser scanning confocal microscopy.  We combined the
four classes that were common to the three original sets.
These were the major, distinct localization patterns of
DNA (217 images), lysosomes (196 images), Golgi (215
images), and tubulin (202 images).

We calculated the SLF3 feature set [6] for all images.
The images for each class were randomly divided into a
training set (100 images per class), stop training set (50
images per class), and test set (46-67 images per class,
depending on class).  Ten different random subdivisions
were generated and each was used to train and test a
BPNN (topology 78-20-4).  Table 1 shows the confusion
matrix averaged across the ten trials. The classifier was
able to recognize images of all four classes with
accuracies ranging from 88% for DNA to 97% for tubulin.
Based on the overall average classification accuracy of
92%, we conclude that the current methods can be applied
to train a network that will classify images of different
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cell lines, obtained using different equipment, with high
accuracy (at least for lines as similar as CHO and HeLa).

Simulation of Publication-Associated Image
Perturbations

To address the issue of publication-associated
manipulations, we have carried out a controlled
characterization of the sensitivity of subcellular location
analysis to such manipulations.  Our strategy was to carry
out these manipulations on the set of HeLa cell images
used for our previous classification work [5, 6] and
evaluate the effect on our SLF features and on the
accuracy of classification with those features.  The image
set contained approximately 85 images for each of ten
classes of subcellular patterns (nuclear DNA, a nucleolar
protein, F-actin, tubulin, a mitochondrial protein, an
endoplasmic reticulum protein, a lysosomal protein, an
endosomal protein and two Golgi proteins).

When images are prepared for publication (either by
authors or publishers), they are frequently subjected to the
following operations:

1) Resiz ing . Images that are collected with a
particular number of pixels often must be resized to
conform to the column width of a journal.  For most
image editing packages, resizing involves low-pass
filtering before the image is resampled. This means high-
frequency information is lost.  Also, error is introduced
into the pixel values by the interpolation process.

2) Intensity modification. When integer intensity
values are rescaled (e.g. to adjust brightness and contrast
or to perform gamma correction), quantization error is
introduced since the new intensity values are also stored
as integer values.  This error becomes larger as the bit-
depth decreases.

3) Lossy Compression. To save space, images in
online journals are often significantly compressed relative
to the image originally provided by the authors.  The most
frequently used method is JPEG compression, which

discards high-frequency information.  This is because
JPEG was designed for "natural" images which typically
do not contain many sharp edges.

We created sets of images which each had one of
these operations performed on it to a particular degree.
All operations were carried out with the Matlab Image
Processing Toolbox.  JPEG compression was carried out
using quality settings of 90%, 70% and 50%.  Intensity
scaling was performed by integer division by 2, 4, 8 and
16 (a majority of the images had bit-depths ranging from
5 to 9).  Lastly, image resizing was done to 70%, 40%,
20% and 10% of the original pixel width of the image.

The full set of our 84 features (termed set SLF4) was
calculated for each perturbed image and two types of
comparisons of the features from the perturbed and
unperturbed images were performed.

Univariate Comparisons of Features from
Perturbed and Unperturbed Images

We first examined potential effects on individual
features.  For each perturbation and for each class, we
performed a t-test to test the hypothesis that the
distribution of each feature was unchanged from that for
the unperturbed images.  Using a confidence level of 0.05,
we identified those features for which this null hypothesis
was accepted for all ten classes of images.  The results are
summarized in Table 2.

The results show that almost all of the features are
sensitive to image size rescaling, indicating that they are
potentially not suitable in their current form for
comparison of images with different magnification.  The
Haralick texture features are quite sensitive to all image
manipulations, as is to be expected given that they are
calculated from the correlations between neighboring
pixel intensities.  By contrast, the Zernike moment
features are robust against compression and modest
intensity scaling.  Intensity scaling by factors of 8 or 16
was too large given the signal in the original images, since
they led to large numbers of blank images.  Even in these
cases, the values of some of the Zernike moments were
preserved.  In addition, many of the features derived from
morphological image processing (e.g., number of objects,
average object size) are also robust against modest
intensity scaling.

Classification Using Features from Perturbed and
Unperturbed Images

We evaluated the overall robustness of the features to
perturbations by comparing the performance of a BPNN
classifier on the features from the perturbed images
against performance on the unperturbed images.

True
Class Output of the Classifier

DNA Giantin LAMP2 Tubulin

DNA 88% 1% 3% 7%

Giantin 1% 95% 3% 2%

LAMP2 1% 8% 89% 2%

Tubulin 2% 0% 1% 97%

Table 1. Classification results for images from
different sources over ten trials using a BPNN
with one hidden layer of 20 nodes, and the
SLF3 feature set (78 features).
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For each type of perturbation a BPNN classifier
(topology 84-20-20-10) was trained and tested for ten
trials. For each trial, images from each class were
randomly divided into a training set (40 images per class),
a stop training set (20 images per class) and a test set (13-
38 images per class depending on class). The results were
reported as the average across the 10 trials of the correct
classification rate on the test set.  When the classifier was
trained using unperturbed features, an average accuracy of
79% (with a 95% confidence interval of 5%) was obtained
(Table 3).  As we have reported previously, all ten classes
can be distinguished.

Classification of Perturbed Image Sets

The same approach was used to train and test
classifiers using each set of perturbed features.  The
results are summarized as average classification accuracy
in Table 4.  Note that the classification accuracy figures
have a 95% confidence interval of about 5%, which
means that 80% accuracy for Intensity/2 and 79% for
Intensity/4 can be considered statistically the same. The
same goes for all of the JPEG results.

The results show that modest intensity modifications
make little difference to classification accuracy, whereas

JPEG
90%

JPEG70% JPEG50%
I/2 I/4 I/8 I/16

Size
70%

Size
40%

Object number + + +
Euler number + + + + +
Average object size + + + + +
Variance of obj. size + + + +
Max/min ratio obj. sz. + + + +
avg. distance to COF + + + +
Variance of distance + + + + +
Max/min ratio of dist. + + +
Fract. Along edge + + + +
Edge homogeneity +
Edge direction ratio1

Edge direction ratio2

Edge direction diff.

Fract. Of convex hull + +
Convex hull shape + + +
Convex hull eccent. + + + +
avg. distance to DNA + + +
var. distance to DNA + + +
m/m ratio dist. DNA + + +
Prot-DNA COF dist. + + + +
Prot-DNA area ratio + +
Prot-DNA overlap +
49 Zernike moments 1 all all 2 3 4 5
13 Haralick features 6 6
Table 2.  Robustness of SLF4 features to image manipulations.  For each condition, those features
that were considered indistinguishable (at a confidence level of 0.05) from the corresponding values
for the unperturbed images are shown with a "+".

1) All unchanged except Z1,1 and Z2,0
2) All unchanged except Z0,0
3) All unchanged except Z0,0 and Z12,2
4) 29 of 49 unchanged
5) 14 of 49 unchanged
6) Only the "correlation" feature was considered to be unchanged
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JPEG compression compromises the accuracy by a small
amount.  As was observed for the univariate tests
described above, intensity reduction by 8 or 16 resulted in
large numbers of blank images. This prevented training of
the classifier for these conditions.  Resizing to 70% of
original size did not seem to have an adverse effect on
classification, whereas resizing of 40% or more resulted in
incomputable Haralick and Convex Hull features for
many of the images and there were too few “usable”
images left for the classifier to be trained. We conclude
that the SLF features are robust to a minor resizing but are
not necessarily usable for greater reductions in image size
or microscope magnification.

Classification of Perturbed Image Sets Mixed
with the Unperturbed Set

Next we tested the hypothesis that a classifier can be
made more robust against a given type of perturbation by
training it with a with a set of examples that includes
several levels of that perturbation. We therefore trained
classifiers with mixed sets composed of the unperturbed
set plus succesive levels of each perturbation.  An
advantage of this approach is that while for the individual
perturbed set classification the sets I/8 and I/16 as well as
R40 to R10 could not be used due to too few “usable”
images being left, here they could be put to use.

As reported in the previous section, the correct
classification rate for just the unperturbed set is 79%.
Interestingly, the classification accuracy for all levels of
mixed sets (Table 5) for intensity and resizing
perturbations ranges from 78% to 80%, which is
statistically the same as 79%, given the 95% confidence
interval of 5%. For JPEG perturbations the accuracy is 4%
lower than the unperturbed set even for just U+J90.
However, even this difference is within the 95%
confidence interval, and therefore it can be considered that
JPEG perturbed images can be recognized with nearly the
same accuracy as unperturbed images. We can conclude
that it is possible to train robust classifiers that can
recognize subcellular location patterns in images that
come at a range of different resolutions and that have been
subjected to various degrees of intensity quantization and
lossy compression. Since these classifiers are based on the
SLF4 features, it must also be true that the SLF4 feature
set itself is robust to the named perturbations. This result
may be counter-intuitive considering the results from the

Perturbation
Type

Classification
Accuracy

Unperturbed 79%
Intensity/2 79%
Intensity/4 81%
Resize 70% 79%
JPEG 90% 72%
JPEG 70% 72%
JPEG 50% 74%

Table 4. BPNN classification accuracies for
the perturbed image sets (averaged over 10
trials for each set and over the ten classes).

Output of the ClassifierTrue
Class DNA ER Gia GPP LAM Mit Nuc Act TfR Tub

DNA 99% 1% 0% 0% 0% 0% 0% 0% 0% 0%

ER 0% 92% 0% 0% 2% 2% 0% 0% 2% 3%

Giantin 0% 2% 75% 16% 0% 1% 2% 0% 3% 0%

GPP130 0% 0% 16% 77% 1% 1% 3% 0% 2% 0%

LAMP2 0% 1% 4% 1% 67% 3% 3% 0% 20% 1%

Mitochondria 0% 15% 0% 0% 1% 68% 0% 2% 5% 11%

Nucleolin 1% 0% 1% 2% 1% 0% 95% 1% 1% 0%

Actin 0% 0% 0% 0% 1% 1% 0% 86% 1% 12%

TfR 0% 2% 1% 0% 20% 6% 0% 7% 52% 11%

Tubulin 0% 4% 0% 0% 0% 10% 1% 5% 3% 78%

Table 3. Classification results for unperturbed HeLa cell data over ten trials using a BPNN with two
hidden layers of 20 nodes each and the SLF4 feature set (84 features).  For each trial, the images for
each class were randomly divided into a training set, a stop training set, and a test set.  The results
on the test set were averaged over the ten trials.  Instances of confusion greater than 15% are
shaded.
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univariate comparisons of feature values for different
levels of perturbations, where it was seen that the
distribution of many features changed considerably.
Apparently data points from different classes remain as
separable clusters in feature space even though the
distribution of the points is changed by the perturbations.

It should be noted that before mixing the Resized
sets, four of the SLF4 features that are explicitly size-
dependent (“Average object size”, “Variance of obj. size”,
“Avg. Distance of objects to COF” and “Variance of
object to COF distance”) were rescaled to normalize them
to the same range as the unperturbed set.

Based on the comparisons of the individual and
combined perturbed sets, and in accordance with the
results from the univariate comparisons of feature values,
we conclude that the SLF4 feature set is robust to
moderate levels of lossy compression and intensity
scaling. They are not, in the present form usable for
images of different resolution. We also conclude that a
somewhat paradoxical improvement in classification
accuracy can be obtained by including perturbed images
during training.

Using the Classifier to Search for Online Images

Having found that our classifier is robust to pattern
changes due to different microscopy methods and cell
types, and that it can reasonably withstand resolution
changes, intensity scaling and lossy compression, we next
wondered whether it would be possible to use it in
combination with the web robot to find and classify
fluorescence microscope image of a defined subcellular
pattern.

As an initial test, we performed a search for "tubulin"
using the online journal search robot described above, and
then used a BPNN to rank the resulting images in order of
their "likelihood" of depicting tubulin.  The BPNN
(topology 65-20-2) used the SLF6 feature set (SLF4
minus DNA features and minus Haralick texture features),
because DNA features were not computable for online
images and Haralick texture features had shown more
sensitivity to image perturbations than other features. This
network had just two outputs, one for class "tubulin" and
one for class "other", so that it could be optimized for the
task of identifying one single class apart from everything
else. The network was trained with the set of perturbed
HeLa cell images where all perturbations had been mixed
together in an effort to provide maximum robustness. In
addition, to provide more fault tolerance, ten independent
BPNN-s were trained, each with different randomly
chosen subset of training data.

The ranking of the output images from the online
image collector was done by computing the SLF6 features
from each image, applying those to each of the ten
networks, and then converting the network outputs for
each image to a single numerical score. This way the
images could be ranked by their numerical score. The
scoring was based on the notion that the outputs of a
BPNN approximate the probability of the input pattern
belonging to respective class of each output node. The
overall score for an image was a sum of two terms: 1) The
average of the scores for the 10 networks, 2) Negative
three times the standard deviation of the scores for the 10
networks. The first term was designed to give high scores
to images for which the "tubulin" output was dominant
and the second term was designed to penalize those
images for which the 10 different networks were not in
good agreement with each other (in other words the
confidence was low).

The "tubulin" query returned 587 images that the
program considered to be single cells (note that not all of
these images would be expected to be of tubulin, since
any other fluorescence microscope images in articles
about tubulin would also be returned). The first 200 of
these images were manually labeled as "tubulin" or
"other" by reading the figure captions.  31 of the images
(16%) were of the "tubulin" class.  Figure 2 shows the
cumulative percentage of images that were actually of
tubulin as a function of their rank. Eight of the 10 highest
ranked images were found to depict a tubulin pattern,
which is much higher than expected for random ranking.

Conclusions

We have described a totally automated method to find
and interpret the fluorescence microscope images
contained in articles in online journals.  Our system
includes 1) a web robot to download articles matching a
query, 2) a tool to extract figure images and the

Sets Combined Classification
Accuracy

U 79%
U+I/2 78%

U+I/2+I/4 78%
U+I/2+I/4+I/8 78%

U+I/2+I/4+I/8+I/16 79%
U+R70 80%

U+R70+R40 80%
U+R70+R40+R20 80%

U+R70+R40+R20+R10 78%
U+J90 75%

U+J90+J70 76%
U+J90+J70+J50 75%

Table 5. BPNN classification accuracies for the
combinations of the perturbed image sets
(averaged over 10 trials for each set).

U – Unperturbed
I/x – Intensity reduction by x
Rx – Resizing to x percent of original size
Jx – JPEG compression at quality level x
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corresponding captions from PDF files, 3) a program for
splitting figures into individual panels, 4) a filter program
for identifying fluorescence microscope images among
the panel images, 5) a program for removing annotations
from images, 6) a segmentation program based on the
watershed algorithm to isolate individual cells from
images containing multiple cells, and 7) a minimal
program to find scale information from the images and
captions.  Evaluations of each of these steps showed good
precision and reasonable recall.

We have also characterized the sensitivity of the
features that we have developed for interpreting
subcellular patterns to manipulations that may occur
during publication. The sensitivity was assayed in two
ways, using either univariate comparison of feature values
for perturbed and unperturbed features, or testing
performance with neural network classifiers.  The results
clearly indicate that our SLF features are robust to
intensity rescaling and image resizing as well as modest
levels of lossy compression.  We also investigated the
classification of images from multiple sources.  We
showed that despite the variation of patterns across two
different types of microscopy and two different cell types
the classifier was able to distinguish four of the major
classes with high accuracy. Combining these findings
with the encouraging results from the perturbation

sensitivity analysis, we conclude that it will be possible to
improve our Subcellular Location Feature sets such that
they can be used for automated analysis of cell images
from the most heterogenous set imaginable - online
journals and databases.  Encouraging preliminary results
in this direction were obtained using a binary classifier
trained on our images of tubulin to find other images of
tubulin in journal articles.

In future work, we plan to further characterize the
sensitivity of the features to different microscopy methods
and cell types, but also to different specimen preparation
methods (e.g., live vs. fixed cells) and different cell states
(e.g., mitosis vs. interphase).  Ultimately, the methods we
describe here will be used to create a knowledge base for
protein location that will contain supported assertions
automatically generated from full-text journal articles and
other online sources.
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Figure 2. Performance of the combined system
using a query for articles containing the word
"tubulin."  Single cell images returned from
online articles were classified and ranked with a
binary classifier as described in the text.  The
cumulative percentage of images returned that
were judged to actually depict tubulin is shown
as a function of rank.  The dotted line shows
expected performance for random ranking while
the dashed line shows ideal performance.


