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Research on the cell and molecular biology of proteins
involved in membrane traffic often requires determi-
nation of the effects of various experimental con-
ditions on the subcellular distributions of those pro-
teins. This is most often accomplished by acquiring
fluorescence microscope images and visually com-
paring these images. While this approach is quite suit-
able for detecting major changes in distributions, it is
not sensitive to small changes and does not permit a
quantitative and objective analysis. We therefore de-
scribe the application of pattern analysis methods to
the comparison of sets of fluorescence microscope im-
ages. This approach provides a high throughput and
reproducible technique to determine whether image
distributions differ within a specified statistical confi-
dence, and is shown to resolve image sets indis-
tinguishable by visual inspection.
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Each protein expressed in a given cell type will localize within
that cell according to the properties of the protein, the com-
plement of other proteins expressed in that cell, and the en-
vironmental state of the cell. Changes in protein expression or
in environmental conditions may result in changes in protein
localization. For example, the GLUT4 glucose transporter is
redistributed from endomembrane vesicles to the plasma
membrane upon exposure to insulin (1–3) and the Menkes
protein shifts from the Golgi apparatus to the plasma mem-
brane upon addition of copper (4). In these cases, the
change in distribution is clear from visual analysis of fluor-
escence microscope images. However, in some cases (such
as redistribution between two visually similar organelles)
changes in protein distribution may not be so evident. For
instance, the balance between distribution in endosomes and
lysosomes may shift upon various pharmacological treat-
ments (5). In such cases, the task is to determine whether
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two sets of similar images indeed differ. Since we have pre-
viously described automated methods for classification of
protein subcellular location patterns in individual cell images
(6–8), we explored the feasibility of extending these methods
to perform automated, objective and sensitive comparison of
sets of fluorescence images.

Before beginning this work, we performed extensive literature
searches of the PubMed database and the INSPEC database.
These searches revealed little prior work that we could build
on. For example, searching PubMed with [‘‘protein’’ and
‘‘quantitative’’ and ‘‘comparison’’ and ‘‘localization’’] yielded
a total of 31 papers. None of these dealt with general
methods for comparison of subcellular patterns. Similar
searches of INSPEC produced no results.

A potential approach to the problem is to perform a pixel-by-
pixel comparison of pairs of images. Since cells show exten-
sive variation in overall shape and in the intracellular distri-
bution of organelles, this approach is not feasible. An alterna-
tive approach is to calculate numerical features that describe
the subcellular pattern in each image and then compare the
features. In this case, the numerical features must be shown
to capture the essential characteristic or characteristics of the
subcellular patterns of interest. The features can include a
set of general descriptors of cell morphology or one or more
specific features developed for a particular application.

Limited work using the latter approach has been described
previously. For example, the Lippincott-Schwartz group (9–
11) quantitated translocation into and out of the Golgi com-
plex in a time series of images by using the image of the
target protein at one time point to create a region of interest
to measure the fraction of protein in that region at other time
points. This method is appropriate in some cases for re-
peated images of the same field, but not for single images
of many cells. We therefore present here a method for quan-
tifying changes in subcellular protein distributions and apply
a standard statistical test to determine the significance of
those changes.

Results and Discussion

We have previously described methods for the numerical de-
scription of protein localization using Zernike moment fea-
tures and Haralick texture features (6), and more recently
have derived an additional set of features specifically for
analysis of subcellular location (7,8). These features are in-
variant to position and rotation, and have been shown to be
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capable of distinguishing the major subcellular organelles
and structures of cultured cells. The full set of subcellular
location features (SLF) consists of 84 features per image
(which includes six features derived from a parallel image of
the DNA distribution). A collection of images of a labeled cell
population can therefore be represented by a matrix where
each column contains the numerical values for a given fea-
ture and each row contains the features for a different image.

In order to compare two sets of images (e.g. before and after
treatment with a drug), our task becomes determining
whether these matrices are statistically different. We consider
two approaches to this test. The first consists of indepen-
dently comparing the distributions of each feature for the two
sets using univariate t-tests (12). The advantages of this ap-
proach are that the results of a test for one feature are not
affected by the presence of additional features, and that it
gives immediate insight into the source of differences be-
tween the two image sets. The disadvantages are that it does
not take into account correlations between features, and that
it exaggerates the probability of at least one false rejection
for a given confidence level (if a test is done for each of 84
features using a 90% confidence level, on average one of
them would be expected to fail even if the two image sets
are drawn from the same distribution).

Therefore, we have used a multivariate statistical approach
known as the Hotelling T2-test (13). The test results in an F
distribution with two degrees of freedom: (i) the number of
features and (ii) the combined number of images in both sets
minus the number of features. The total number of images
used in the comparison therefore must be greater than the
number of features. Advantages of this approach are that the
T2 and F-values are a quantitative measure of the similarity
between the two distributions, and that a single test of the
hypothesis that the two sets are indistinguishable can be
made by comparing the F-value to the critical value for a
given confidence interval.

We performed two experiments to demonstrate the utility of
this method for subcellular protein distributions, using the
collection of HeLa cell images captured for our study of
classification of subcellular patterns (8). This collection con-
tains 10 classes of subcellular distributions corresponding to
all major subcellular structures, and includes classes both
distinguishable and indistinguishable to the naked eye. Fig-
ure1 shows an example of two classes that are difficult to
distinguish, the localization patterns for giantin and gpp130
(both of which localize to the Golgi apparatus).

Our first experiment was to carry out the T2-test for all pairs
of classes. In order that our method would be as generally
useful as possible, we created a 65-feature subset of our 84
SLF features by eliminating six features that require a parallel
image of the DNA distribution and 13 Haralick texture fea-
tures that show some sensitivity to the overall intensity of
the images. Table1 shows F-values indicating the degree of
similarity of each pair using the 65 features. As expected, we
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Figure1: The patterns of two different Golgi proteins are
visually indistinguishable by fluorescence microscopy. Shown
are the four most typical images (17) of giantin (A–D) and gpp130
(E–H) from the collection of HeLa cell images (8).

observed that each pair of classes was correctly identified as
being different. For example, the visually indistinguishable
pair giantin and gpp130 gave an F-value of 2.6, which is
higher than the critical value of 1.4. The highest values (on
the order of 102) were found in the comparison of DAPI with
other classes, as the DNA distribution is very different from
the other subcellular patterns.

To further validate our approach, we wished to establish that
two sets of images from the same subcellular protein distri-
bution would be correctly identified as being the same. To
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Table1: T2-test of similarity between classes of subcellular patterns. Sets of images showing various subcellular patterns were compared. The
reagents used to acquire various patterns were 4,6-diamidino-2-pheylindole (DAPI) to label nuclear DNA, phalloidin (Phal.) to label filamentous
actin, monoclonal antibodies against unknown antigens specific to the endoplasmic reticulum (ER) and mitochondria (mc151), and monoclonal
antibodies against the Golgi proteins giantin and gpp130, the lysosomal membrane protein LAMP2, the nucleolar protein nucleolin, the transfer-
rin receptor (tfr), and the cytoskeletal protein tubulin. The F-values from the T2-test for the comparison of each class with each other class are
shown (the critical values of the F distribution for a 95% confidence level range from 1.42 to 1.45, depending on the total number of images in
the comparison). Thus, all classes were considered to be distinguishable from each other with 95% confidence. Note that the lowest F-values
were observed for the comparisons of giantin with gpp130 and transferrin receptor with LAMP2 (shown in bold face)

Class No. of DAPI ER Giantin gpp130 LAMP2 mc151 Nucleolin Phal. tfr
images

DAPI 87
ER 86 90.6
Giantin 87 138.9 49.9
gpp130 85 154.1 51.3 2.6
LAMP2 84 92.3 22.6 11.7 11.6
mc151 73 179.2 11.0 56.1 61.6 17.4
Nucleolin 73 91.3 60.3 18.7 17.1 20.0 67.0
Phal. 98 523.5 58.1 374.2 358.2 127.4 17.0 274.2
tfr 91 101.3 8.6 19.1 17.5 3.1 9.0 30.3 26.4
Tubulin 91 185.5 12.5 97.3 102.4 31.3 8.0 100.5 21.4 6.5

obtain such sets, we randomly divided a single image set
into two sets of equal size. We repeated this subdivision and
comparison 1000 times, and carried this out for each of the
two largest image sets, transferrin receptor and phalloidin.
We expected that the sets would be found to be the same
95% of the time and that approximately 50 of the 1000 com-
parisons would incorrectly identify the sets as being from dif-
ferent distributions. The results shown in Table2 are in agree-
ment with the expectation.

The possibility remains that reported differences in classes
found, especially those of closely related classes such as
giantin and gpp130, are due to artifactual differences arising
from experimental protocols rather than biologically signifi-
cant differences in subcellular pattern. As a control for this
possibility, we chose to compare sets of images of the same
protein acquired under different experimental conditions. To
this end, we collected 36 images of cells stained using a
rabbit anti-giantin antiserum and 44 images of cells stained

Table2: T2-tests of similarity within image classes. Images from a
single localization class were randomly divided into two subsets and
compared using a set of 65 features. The results shown are com-
piled for 1000 such random subdivisions. The first degree of free-
dom was 65 for both tests. The second was 25 for transferrin re-
ceptor and 32 for phalloidin. The critical value was calculated from
a confidence level of 95% and therefore the expected number of
sets failing was 50. The results fall within this expected number of
sets failing suggesting that subsets were accurately described as
being from the same distribution

tfr Phal

Average F 1.08 1.10
Critical value 1.81 1.71
Number of sets failing 32 59
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using a mouse anti-giantin monoclonal antibody. During the
preparation of each set, all conditions were kept as constant
as possible. Using the 65-feature subset described above,
the two image sets were compared at a statistical confidence
level of 95%. The F-value generated was 1.04 relative to a
critical value of 2.22, signifying that the two sets are correctly
identified as being of the same class, despite the use of dif-
ferent primary and secondary antibodies. The combination of
this result with those in Table2 indicates that our method
correctly considers sets that show the same underlying pat-
tern to be the same, and strengthens our conclusion that
similar but distinct patterns can be accurately discriminated.

Once two sets are found to be different, it is important to
gain insight into the features that contribute to this difference.
For this purpose, we have performed univariate t-tests on
each feature and recorded the confidence level at which the
feature is found to be the same in the two distributions. The
features were then ranked according to the confidence
levels. Results for this analysis on the giantin and gpp130
sets are shown in Table3.The major distinction between the
two classes arises from differences in the general shape of
the protein distribution, the size of the objects, and the dis-
tance of the objects from the center of fluorescence. When
a similar comparison is done for giantin and phalloidin, 40 of
the 49 Zernike moment features and five of the morpholog-
ical features are all found to differ with greater than
99.99999% confidence.

Our results demonstrate an automated and reproducible
method for the comparison of subcellular patterns. We have
shown that it is possible to use the F-value derived from a
multivariate hypothesis test of two distributions as a nu-
merical indicator of the degree of similarity between im-
ages. We have also shown that the system can differentiate
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Table3: Most distinguishing features of a two-class comparison. To isolate the features best able to distinguish giantin and gpp130 images,
a univariate t-test was performed on each feature as described in the text

Feature Confidence level
at which feature
differs

Eccentricity of the ellipse equivalent to the protein image convex hull 99.99999
Convex hull roundness 99.9999
Measure edge direction homogeneity 1 99.9873
Average number of above threshold pixels per object 99.9873
Average object distance to the center of fluorescence 99.9873
Ratio of largest to smallest object to image center of fluorescence distance 99.9873

between two sets of images previously indistinguishable by
visual analysis, thereby surpassing previous subjective tech-
niques. The system can also correctly identify situations in
which two patterns showing the same distribution are com-
pared.

With the completion of genome sequencing projects, sig-
nificant efforts are now being directed to high throughput
methods for characterizing the products of the many unchar-
acterized genes that have been identified. Systematic classi-
fication and comparison methods for determining subcellular
location for large numbers of proteins can play a role in high
throughput characterization projects. In addition, high
throughput methods may be used to identify pharmacologi-
cal agents that have a specific effect on cellular processes,
such as protein subcellular location. The objectivity, sensitivity
and automation afforded by the approach described here are
expected to be of significant value in high throughput screen-
ing protocols. Although our results were obtained using man-
ual cropping of images for the purpose of segmenting cells,
a number of approaches to fully automated segmentation
have been developed previously with favorable results, and
these approaches can easily be combined with the methods
described here to provide a fully automated system.

An alternative method for sensitive comparison of the distri-
butions of two proteins is the simultaneous use of two or
more fluorophores. This approach has been used to distin-
guish cis and trans Golgi markers (14). However, it has the
disadvantage that it requires both proteins to be visualized in
the same cells (which is often difficult if both proteins are
‘tagged’ the same way, such as with GFP fusions or with
monoclonal antibodies derived from the same source). It is
also unsuited to comparing distributions from two popula-
tions of cells that have been treated differently (e.g. with and
without a drug). The method we describe is thus much easier
to apply and more generally applicable but is not intended to
replace two-color analysis for some applications.

A web service (SImEC, for Statistical Image Experiment
Comparator) implementing the method described here is
available to compare sets of uploaded images (http://
murphylab.web.cmu.edu/Services/SImEC).
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Materials and Methods

Computational methods

The system described here was implemented in Matlab (The Mathworks,
Natick, MA, USA), using the Image Processing and Statistics toolboxes
along with previously developed Cππ functions for feature calculation (8).

Immunofluorescence microscopy

HeLa cells were grown for 1 d in Dulbecco’s modified Eagle’s medium
(Hyclone, Logan, VT, USA) containing 10% calf serum and 1% penicillin/
streptomycin mix (v/v) (Intergen Co., Purchase, NY, USA) on 19-mm cover
slips coated with 0.1% (w/v) type I collagen in 0.01 HCl. Cells were washed
twice with phosphate-buffered saline (PBS: 140mM NaCl, 2.6mM KCl,
8.1mM Na2HPO4, 1.5mM KH2PO4, 0.9mM CaCl2, 0.5mM MgCl2, pH7.4),
fixed for 15min with 3.7% paraformaldehyde in PBS, and washed twice in
PBS. They were then permeabilized for 10min with 0.1% Triton X-100 in
wash buffer (WB: 0.5% bovine serum albumin and 0.15% glycine in CSB,
137mM NaCl, 5mM KCl, 1.1mM Na2HPO4, 0.4mM KH2PO4, 4mM NaHCO3,
2mM MgCl2. 6H2O, 2mM EGTA, 0.1% glucose, 5mM Pipes, pH6.1),
washed twice with WB, and blocked overnight at 4 æC with goat serum
diluted 1 :20 in WB.

Cells were washed twice with WB and incubated for 60min with either of
two anti-giantin antibodies. The first was a mouse monoclonal antibody
directed against the central portion of the rod domain of giantin (clone
133) (15), prepared at a 1 :200 dilution in WB. The second was a rabbit
anti-giantin antiserum directed against the N-terminal portion of giantin
(16) prepared at a 1 :2000 dilution in WB. Cells were washed three times
with WB and incubated for 60min with an appropriate secondary anti-
serum, either a 1 :400 dilution of goat anti-mouse IgG (HπL) antiserum
conjugated to Alexa Fluor 488 (Molecular Probes, Inc., Eugene, OR, USA)
or a 1 :200 dilution of goat anti-rabbit IgG antiserum conjugated to fluor-
escein isothiocyanate isomer I (Sigma). After washing three times each
with WB and CSB, cells were incubated for 15min in 100mg/ml RNAse A
(Sigma) in CSB, and washed three times in CSB. Cells were incubated for
15min in 25mg/ml FluoroLink Cy5 (Amersham Pharmacia Biotech, Piscata-
way, NJ, USA) in CSB to label total cell protein, and washed three times
each in WB and CSB. Finally, total DNA was stained with 5mg/ml propidi-
um iodide (Molecular Probes, Inc.) in CSB.

Coverslips were mounted on microscope slides in gelvatol [60ml of 10mM

Tris, 15g Airvol 205 (Air Products, Allentown, PA), 30ml glycerol, 1g n-
propyl gallate]. Three color images (1024¿1024 pixels, 9.8mm2) were
acquired using a 100¿, 1.4 numerical aperture objective lens mounted on
a Leica TCS NT confocal laser scanning microscope (each pixel corre-
sponds to a square region of the sample 98 nm on a side). The DNA and
total protein images were used to identify individual cells but features were
calculated using only the Alexa Fluor 488 or fluorescein images.
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