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ABSTRACT: Fluorescence microscopy is a powerful tool for analyzing the
subcellular distributions of proteins, but that power has not been fully utilized
because most analysis of those distributions has been done by visual examina-
tion. This limitation can be overcome using automated pattern recognition
methods widely used in other fields. This article summarizes work demon-
strating that automated systems can recognize the patterns of major organelles
in both two- and three-dimensional images of cultured cells, and that these
systems can distinguish similar patterns better than visual examination. The
basis for these systems are sets of Subcellular Location Features that capture
the essence of subcellular patterns without being sensitive to the extensive varia-
tion that occurs in the size, shape, and orientation of cells in microscope images.
These features can also be used to make sensitive, statistical comparisons of the
distribution of a protein between two conditions, such as in the presence and
absence of a drug. The possible use of automated pattern analysis methods for
improving detection of abnormal cells in cancerous or precancerous tissues is
also discussed.
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LOCATION PROTEOMICS

Basic research in biology has been revolutionized by the advent of genomics,
defined as the study of entire genomes rather than individual genes. As the sequences
of complete genomes (and lists of suspected genes making up those genomes) have
become available, the focus of much biological research has shifted from genomics
to proteomics in order to understand the behavior and function of all proteins and
the roles they play in development and disease. Most proteomics efforts to date have
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focused on methods for determining protein sequence, structure, abundance, and
interactions. Far less attention has been paid to determining and understanding the
locations of protein within cells, although knowledge of the subcellular location of
a protein is critical to understanding how it functions. The primary method by which
information has been obtained about the organelles and other subcellular structures
that contain a specific protein is by labeling that protein with a fluorescence probe
(e.g., using a monoclonal antibody) and collecting images of cells using a fluores-
cence microscope. The main reason for the absence of prior systematic, large-scale
efforts to determine subcellular location for all proteins has been the difficulty of
automatically and quantitatively describing subcellular location in cells with varying
sizes and shapes.

A major goal in my group in the past few years has therefore been to perform
automated interpretation of fluorescence microscope images depicting the sub-
cellular distribution of proteins.!~7 While the primary motivation behind this work
has been to enable the new field of location proteomics, the work also has potential
applications in cancer detection, assessment, and treatment.

This chapter will therefore review previous work demonstrating that changes in
the subcellular distributions of proteins and organelles can be recognized in
fluorescence microscope images in a fully automated manner.

DEVELOPMENT OF SUBCELLULAR LOCATION FEATURES AND
CLASSIFICATION OF SUBCELLULAR PATTERNS

The most critical component of our work to date has been the development of sets
of numerical features that capture the essence of subcellular distributions without
being overly sensitive to the position or rotation of a cell within an image.!3:¢ We
have used these features to create automated classifiers that can recognize the
patterns of all major subcellular structures in 2D images.3:¢

The input was a collection of images of HeLa cells that were labeled with anti-
bodies against protein markers for various organelles. Examples of the images used
in these studies are shown in FIGURE 1. We specifically included markers whose dis-
tributions are quite similar: the proteins giantin and GPP130 are both found primarily
in the Golgi apparatus, and the patterns of LAMP2 (primarily lysosomal) and trans-
ferrin receptor (TR, primarily endosomal) are difficult to distinguish visually.

The general pattern recognition problem is to learn the patterns present in two or
more classes of image, where each class is known to differ from the others by at least
one descriptor external to the image (called a label), such that the class of new
images not used in the learning can be predicted correctly. The accuracy of prediction
for new images is usually assessed by dividing any available labeled images into a
training set used to train the classifier and a test set used to evaluate performance by
comparing the class predicted by the classifier to the known class. There are two basic
approaches to recognizing patterns in images. The first involves learning a model of
the distribution of the pixels in each class so that the model can be compared to the
pixel values in new images. The second involves describing the images using
numerical features and learning rules to associate the feature values to the classes.

For recognizing protein patterns, the variability of cell size, shape, and orienta-
tion within the microscope field, and the variability in the number, position, and
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FIGURE 1. Representative images from the 2D HeLa cell data set described in the text.
These images have had background fluorescence subtracted and have had all pixels below
an automatically chosen threshold set to 0. Images are shown for HeLa cells labeled with
antibodies against an ER protein (A), the Golgi protein giantin (B), the Golgi protein
GPP130 (C), the lysosomal protein LAMP2 (D), a mitochondrial protein (E), the nucleolar
protein nucleolin (F), transferrin receptor (H), and the cytoskeletal protein tubulin (J).
Images are also shown for filamentous actin labeled with rhodamine-phalloidin (G) and
DNA labeled with DAPI (K). Scale bar: 10 um. (Reprinted from ref. 3.)
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orientation of organelles within each cell, make it difficult to use model-based
approaches. We have therefore evaluated a number of types of numerical features for
describing the patterns in cell images. These have been described in detail
previously>7 and are briefly summarized here. Zernike moment features describe the
overall pattern in a cell by measuring the degree to which the pattern matches a set
of radially symmetric functions (the Zernike polynomials). Haralick texture features
describe the frequency with which particular pixel values are found adjacent to other
pixel values. Morphological features describe the properties of objects derived from
thresholding the image (e.g., average object size). Edge features describe the distri-
bution of edges (regions of sharply varying intensity) in an image (e.g., the fraction
of fluorescence found along an edge). Last, hull features describe the pattern relative
to the convex hull of the image, which connects the outermost set of above-threshold
pixels.

We have used these features in various combinations to analyze cell images. To
facilitate referring to a specific feature or combination of features, we have described
a nomenclature for these Subcellular Location Features, or SLF. Sets of SLF are
referred to by a set name (e.g., SLF3), and individual features are referred to by a set
name and the number of the feature within that set (e.g., SLF3.7).

Obviously, the quality of classification results depends critically on the quality of
the features used. For many classification approaches, the presence of uninformative
features (features that have similar values for all classes) or the presence of redun-
dant features (features whose values are correlated with those of other features) can
complicate the learning task sufficiently so that poorer results are obtained than
would have been obtained with a smaller set of informative, nonredundant features.
One approach to creating such a set is to only describe images using features known
to meet this criterion, which is often very difficult. A second approach is to describe
each image using many features (some of which may be redundant or noninforma-
tive) and then use a method that automatically identifies which features best distin-
guish the classes being analyzed. There are many such methods and we have
evaluated a number of them in the context of subcellular pattern analysis.® The best
results were obtained with Stepwise Discriminant Analysis (SDA) and we have de-
fined some SLF sets as the results of applying SDA to a larger SLF set. A description
of each feature and set can be found at http://murphylab.web.cmu.edu/services/SLF/.

Results for one of our automated classification systems are shown in TABLE 1 in
the form of a confusion matrix that tabulates how often images of a known class
(shown in the row headings) are placed by the classifier in each predicted class
(shown in the column headings). As can be seen, the classifier can distinguish all
classes (including the two Golgi proteins) with an accuracy over 70%.

An important finding of our initial work on the HeLa data set®> was that an auto-
mated system could recognize subtle differences in protein patterns that are not readily
distinguishable by visual examination. To confirm that these patterns were indeed dif-
ficult to distinguish visually, we tested the ability of a human observer to learn this
task.” The results are shown in TABLE 2. While our automated classifiers can distin-
guish the Golgi proteins giantin and GPP130 with an average accuracy of 75% (TABLE
1), a human observer, even after training until no further improvement occurred, had
an average accuracy of only 50% (which is what is expected for random guessing).
Both the automated system and visual examination had a similar overall accuracy
when the two proteins were combined and considered as a single Golgi class.



128 ANNALS NEW YORK ACADEMY OF SCIENCES

TABLE 1. Confusion matrix for classification of images from the 2D HeLa data set
combined with a parallel DNA image

Output of the classifier

True class DNA ER Gia GPP LAM Mit Nuc Act TfR  Tub

DNA 929 1 0 0 0 0 0 0 0 0
ER 0 89 0 0 4 4 0 0 1 2
Giantin 0 0 76 20 0 1 1 0 1 0
GPP130 0 0 23 73 0 1 2 0 1 0
LAMP2 0 2 0 0 83 1 0 0 13 0
Mitochon. 0 5 0 0 90 0 0 1 2
Nucleolin 0 0 0 0 0 98 0 0
Actin 0 0 0 0 0 0 99 1
TfR 0 3 0 0 16 3 1 75 2
Tubulin 0 2 0 0 0 2 0 3 93

NoTE: The SLF13 feature set was used with a BPNN with a single layer of 20 hidden units
over 10 cross-validation trials. The number of images in each predicted class is shown as a
percentage of the number of test images for each known class (averaged across the 10 cross-
validation trials). The average correct classification rate was 88% (91% when the two Golgi
proteins, giantin and GPP130, are considered as a single class). Data from ref. 7.

TABLE 2. Confusion matrix for visual classification of images from the 2D HeLa
data set

Output of the classifier

True class DNA ER Gia GPP LAM Mit Nuc Act TfR Tub
DNA 100 0 0 0 0 0 0 0 0 0
ER 0 90 0 0 3 6 0 0 0 0
Giantin 0 0 56 36 3 3 0 0 0 0
GPP130 0 0 53 43 0 0 0 0 3 0
LAMP2 0 0 6 0 73 0 0 0 20 0
Mitochon. 0 3 0 0 0 96 0 0 0
Nucleolin 0 0 0 0 0 0 100 0 0
Actin 0 0 0 0 0 0 0 100 0
T{R 0 13 0 0 3 0 0 0 83 0
Tubulin 0 3 0 0 0 0 0 3 0 93

NoTtE: The number of images in each predicted class is shown as a percentage of the number of
images for each known class (the results are from the last round of testing, after the classification
accuracy had reached a maximum). The average correct classification rate was 83% (92% when
the two Golgi proteins, giantin and GPP130, are considered as a single class). Data from ref. 7.
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The above results are for classifying single cells, but even better performance can
be obtained if we assume that all of the cells on a given slide show the same pattern.
With this assumption, we can form small sets of cells from the same set, classify
each individually, and then choose as the prediction for the whole set whichever
class had the most cells. We have shown that such a “plurality voting” scheme can
use a classifier with an average accuracy of 83% to classify sets of ten cells with an
average accuracy greater than 98%.3

The improvement over visual examination demonstrated above for our automated
systems on 2D images might be expected to be even greater for the analysis of 3D
images, given the difficulty of visualizing and remembering complex patterns in
more than two dimensions. To test this hypothesis, we collected a data set of 3D
HeLa images covering the same patterns in the 2D data set.’ Using only morpho-
logical features, these images could be classified with an average accuracy of 91%.
This was about 5% better than that obtained for 2D classification using just the
central slice from each 3D image.5

COMPARISON OF CELL POPULATIONS

The work described above addresses the assignment of cell images to defined
classes, such as organelles. An equally important problem frequently addressed by
fluorescence microscopy is determining whether the pattern of a protein changes in
response to some treatment (such as the addition of a drug). More generally, this
problem can be described as determining whether two sets of images represent
statistically different patterns. Since the SLF contain sufficient information about
subcellular patterns to allow those patterns to be accurately classified, it is
reasonable to expect that they can be used to measure changes in those patterns as
well. We have thus developed a system (called SImEC for Statistical Imaging
Experiment Comparator) that performs rigorous statistical comparison of image sets.*

SImEC begins by converting image sets into a matrix in which each row
represents a cell image and the columns contain the values of the chosen SLF set.
The statistical question is then whether it is likely, at a given confidence level, that
the matrices for the two sets could have resulted from images drawn from the same
set. This hypothesis can be tested using the Hotelling 72 test, which yields an F
statistic with two degrees of freedom: the number of features and the combined num-
ber of images in the two sets minus the number of features. If the F statistic for two
sets is greater than the critical F value for those degrees of freedom at the chosen
confidence level, the hypothesis that the sets are drawn from the same population can
be rejected. TABLE 3 shows the F statistics for all pairwise comparisons between the
ten classes in the 2D HeLa cell data set. Not unexpectedly given that all of these
classes can be distinguished by a classifier, the results indicate that all ten classes are
statistically different at the 95% confidence level. To test that the test does not falsely
identify all sets as different, random subsets drawn from the same class were com-
pared at the same confidence level. Over repeated trials, approximately 95% of the
randomly drawn subsets were considered to be the same (as expected). The conclu-
sion is that the SLF can be used to create a statically sound method for comparing
subcellular protein distributions.
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TABLE 3. Pairwise comparison of classes from the 2D HeLa data set using SImEC

No. of
Class images DNA ER Gia GPP LAM  Mit Nuc Phal TfR
DNA 87
ER 86 90.6

Giantin 87 138.9 49.9

GPP130 85 154.1 513 2.6

LAMP2 84 923 22.6 11.7 11.6

Mitochon. 73 179.2 11.0  56.1 61.6 17.4

Nucleolin 73 91.3 60.3 18.7 17.1 20.0 67.0

Actin 98 5235 58.1 3742 3582 1274 17.0 2742

T{R 91 1013 8.6 19.1 17.5 3.1 9.0 303 264
Tubulin 91 1855 125 973 1024 31.3 8.0 100.5 214 6.5

NoTE: The values shown are F values from the 72 test for the comparison of each class with
each other class. Larger F values indicate that the two classes are more dissimilar. To determine
whether two classes differ at a particular confidence level, the F value is compared to the critical
F value for that confidence level. The critical values of the F distribution for a 95% confidence
level range from 1.42 to 1.45 for the comparisons shown here (the critical value depends on the
total number of images in the comparison and the number of features being used). Since all F
values shown in the table are greater than this, all classes can be considered to be distinguishable
from each other with 95% confidence. Note that the lowest F' values were observed for the
comparisons of giantin with GPP130 and of transferrin receptor with LAMP2. The highest F" values
were seen for pairs that are very different, such as for the DNA distribution compared with any
of the others. Data from ref. 4.

IMPLICATIONS FOR IMPROVED DETECTION OF
CANCEROUS AND PRECANCEROUS TISSUE

It is becoming increasingly clear that what may be largely normal-appearing
tissue in the vicinity of skin (and other) cancers may be precancerous to a sufficient
degree that recurrence at that site is likely. For nonmelanoma skin cancers, the most
common current approach to surgery is to remove tissue until pathology indicates
that the margins of the removed tissue are clear. For melanoma, additional tissue is
removed until a 1- to 3-cm margin beyond the tumor is created. A difficulty with
these approaches is that current methods cannot always determine whether the
margins are indeed fully normal tissue.

Fluorescent probe staining has the potential to provide a dramatic increase in
sensitivity and accuracy over traditional pathology stains. Probes that may be useful
include antibodies against proteins known to localize in specific organelles, antibodies
against proteins implicated in oncogenesis, or dyes that stain specific organelles or
biochemical processes. However, a significant current limitation in the use of
fluorescence microscopy for pathology is that fluorescence microscope images are
difficult to interpret because the structural context visible with traditional stains is
absent. One possible solution to this problem is the use of automated image analysis
methods such as those described here. The prior work has been carried out on model



MURPHY: PROTEIN SUBCELLULAR LOCATION PATTERNS 131

systems consisting of cultured cells grown on coverslips, and thus one task to be
accomplished is to extend them to images of cells in intact tissues. The next step is
to identify proteins whose subcellular patterns change at various stages during the
development of malignancies in a particular tissue (if they exist). This knowledge
can potentially be used to screen for abnormalities (e.g., in biopsies) and to assess
the stage or risk for a given abnormality.
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